DOI QR코드

DOI QR Code

The Use and Abuse of Climate Scenarios in Agriculture

농업부문 기후시나리오 활용의 주의점

  • Kim, Jin-Hee (Agricultural Climatology Lab., College of Life Sciences, Kyung Hee University) ;
  • Yun, Jin I. (Agricultural Climatology Lab., College of Life Sciences, Kyung Hee University)
  • 김진희 (경희대학교 농업기상연구실) ;
  • 윤진일 (경희대학교 농업기상연구실)
  • Received : 2016.09.01
  • Accepted : 2016.09.26
  • Published : 2016.09.30

Abstract

It is not clear how to apply the climate scenario to assess the impact of climate change in the agricultural sector. Even if you apply the same scenario, the result can vary depending on the temporal-spatial downscaling, the post-treatment to adjust the bias of a model, and the prediction model selection (used for an impact assessment). The end user, who uses the scenario climate data, should select climate factors, a spatial extend, and a temporal range appropriate for the objectives of an analysis. It is important to draw the impact assessment results with minimum uncertainty by evaluating the suitability of the data including the reproducibility of the past climate and calculating the optimum future climate change scenario. This study introduced data processing methods for reducing the uncertainties in the process of applying the future climate change scenario to users in the agricultural sector and tried to provide basic information for appropriately using the scenario data in accordance with the study objectives.

농업부문의 기후변화 적응은 농작물의 생육과 수량에 미치는 기후변화 영향의 정량평가로부터 시작된다. 이를 위한 조건으로서 작물모형 외에 과거-미래 간 이음새 없는 기후자료가 필요하지만, 기후시나리오에서 산출된 과거 기간의 자료는 실측 기후와 차이가 난다. 이것을 보정 없이 작물모형 구동에 사용한다면 농작물의 생육과 수량예측이 현실과 동떨어진 것이 되어 모의결과를 바탕으로 마련된 적응대책은 실효성이 낮아진다. 또한 동일한 기후시나리오를 사용자에 따라 서로 다른 시공간적 상세화 작업이나 기후모델의 편의보정을 위한 후처리 작업을 수행한다면 작물모형 구동결과는 달라질 수 있다. 농업부문에서 불확실성을 최소화한 영향평가결과를 도출하기 위해서는 먼저 최종 사용자의 목적에 적합한 공간적 및 시간적 규모를 설정하는 일이다. 나아가 과거기후의 재현성을 포함한 시나리오기후의 불확실성을 정확히 파악하여 영향평가결과의 불확실성을 정량적으로 제시할 수 있어야 한다. 이 논문에서는 기후시나리오의 농업분야 활용과정에서 발생할 수 있는 불확실성을 요인별로 추적하고, 이를 줄이기 위한 자료처리기법을 소개하며, 연구목적에 따른 최적 시나리오 자료를 추천함으로써 기후변화 적응을 위한 기초정보를 제공하고자 하였다.

Keywords

References

  1. Ahn, J. B., J. N. Hur, and K. M. Shim, 2010: A simulation of agro-climate index over the Korean Peninsula using dynamical downscaling with a numerical weather prediction model. Korean Journal of Agricultural and Forest Meteorology, 12(1), 1-10. https://doi.org/10.5532/KJAFM.2010.12.1.001
  2. Ahn, J. B., J. Y. Hong, and M. S. Seo, 2013: Present-day climate of the Korean Peninsula centered Northern East Asia based on CMIP5 historical scenario using fine-resolution WRF. Atmosphere, 23(4), 527-538. https://doi.org/10.14191/Atmos.2013.23.4.527
  3. Bae, D. H., I. W. Jung, B. J. Lee, and M. H. Lee, 2011: Future Korean water resources projection considering uncertainty of GCMs and hydrological models. Journal of Korea Water Resources Association 44(5), 389-406. https://doi.org/10.3741/JKWRA.2011.44.5.389
  4. Cho, J., 2013: APCC Research Report 2013-05: 불확실성을 고려한 농업용 저수지의 기후변화 영향 평가. Apec Climate Center, 55-104.
  5. Chung, U., J. Cho, and E. J. Lee, 2015: Evaluation of agro-climatic index using multi-model ensemble downscaled climate prediction of CMIP5. Korean Journal of Agricultural and Forest Meteorology, 17(2), 108-125. https://doi.org/10.5532/KJAFM.2015.17.2.108
  6. Deser, C., A. Phillips, V. Bourdette, and H. Teng, 2012: Uncertainty in climate change projections: the role of internal variability. Climate Dynamics, 38(3-4), 527-546. https://doi.org/10.1007/s00382-010-0977-x
  7. Fischer, E. M., U. Beyerle, and R. Knutti, 2013: Robust spatially aggregated projections of climate extremes. Nature Climate Change, 3(12), 1033-1038. https://doi.org/10.1038/nclimate2051
  8. Giorgi, F. and L. O. Mearns, 2002: Calculation of average, uncertainty range, and reliability of regional climate changes from AOGCM simulations via the "reliability ensemble averaging" (REA) method. Journal of Climate, 15(10), 1141-1158. https://doi.org/10.1175/1520-0442(2002)015<1141:COAURA>2.0.CO;2
  9. GNU, 2014: Development of Mitigation Strategies for Agricultural Infrastructure Against Climatic Hazard. 농촌진흥청 최종보고서(과제번호: PJ008335), GyeongSang National University.
  10. Gudmundsson, L., J. B. Bremnes, J. E. Haugen, and T. Engen-Skaugen, 2012: Technical Note: Downscaling RCM precipitation to the station scale using statistical transformations-a comparison of methods. Hydrology and Earth System Sciences, 16(9), 3383-3390. https://doi.org/10.5194/hess-16-3383-2012
  11. Guyennon, N., E. Romano, I. Portoghese, F. Salerno, S. Calmanti, A. B. Petrangeli, G. Tartari and D. Copetti, 2013: Benefits from using combined dynamicalstatistical downscaling approaches-lessons from a case study in the Mediterranean region. Hydrology and Earth System Sciences, 17, 705-720. https://doi.org/10.5194/hess-17-705-2013
  12. Hashino, T., A. A. Bradley, and S. S. Schwartz, 2006: Evaluation of bias-correction methods for ensemble streamflow volume forecasts. Hydrology and Earth System Sciences Discussions, 3(2), 561-594. https://doi.org/10.5194/hessd-3-561-2006
  13. Hempel, S., K. Frieler, L. Warszawski, J. Schewe, and F. Piontek, 2013: A trend-preserving bias correction-the ISI-MIP approach. Earth System Dynamics, 4(2), 219-236. https://doi.org/10.5194/esd-4-219-2013
  14. Im, E. S., I. W. Jung, and D. H. Bae, 2011: The temporal and spatial structures of recent and future trends in extreme indices over Korea from a regional climate projection. International Journal of Climatology, 31(1), 72-86. https://doi.org/10.1002/joc.2063
  15. IPCC, 2013: The physical science basis: contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, United Kingdom, and New York, NY, USA, 1535pp.
  16. IPCC, 2014: Climate change 2014: synthesis report contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change [Core Writing Team, R.K. Pachauri and L.A. Meyer (eds.)], Geneva, Switzerland, 151pp.
  17. Jung, H. C., and M. S. Suh, 2015: Correction of mean and extreme temperature simulation over south Korea using a trend-preserving bias correction method. Atmosphere, 25(2), 205-219. https://doi.org/10.14191/Atmos.2015.25.2.205
  18. Kim, C., and M. S. Suh, 2013: Prospects of using Bayesian model averaging for the calibration of one-month forecasts of surface air temperature over South Korea. Asia-Pacific Journal of Atmospheric Sciences, 49(3), 301-311. https://doi.org/10.1007/s13143-013-0029-7
  19. Kim, G. Y., J. E. Kim, C. J. Kim, C. S. Jin, D. H. Cha, M. S. Suh, and S. C. Park, 2014b: Climate change projections over CORDEX East Asia domain using multi-RCMs. KU Climate Research, 9(4). 257-268. https://doi.org/10.14383/cri.2014.9.4.257
  20. Kim, J. H., and J. I. Yun, 2015: Projections of future summer weather in Seoul and their impacts on urban agriculture. Korean Journal of Agricultural and Forest Meteorology, 17(2), 182-189. https://doi.org/10.5532/KJAFM.2015.17.2.182
  21. Kim, J. H., H. R. Cho, and Y. S. Cho, 2014a: Projection of climate change with uncertainties: 1. GCM and RCP uncertainties. Journal of Korean Society of Hazard Mitigation, 14(5), 317-327.
  22. Kim, M. K., D. H. Lee, and J. Kim, 2013: Production and validation of daily grid data with 1 km resolution in South Korea. Weather Research, 8(1), 13-25.
  23. Kim, M., 2015: Development of weather generator for statistical downscaling. APCC, Busan, South Korea.
  24. KMA, 2014: Korean Climate Change Assessment Report 2014: The Physical Science Basis. Korea Meteorological Administration.
  25. Lee, J. K., and Y. O. Kim, 2009: Reducing uncertainties in climate change assessment. Journal of Hydro Environment Research, 345-351.
  26. Lee, J. K., and Y. O. Kim, 2015: Verification of bias corrected simulations of climate models using entropy. Journal of Korean Society of Hazard Mitigation, 15(5), 25-35. https://doi.org/10.9798/KOSHAM.2015.15.5.25
  27. ME, 2014: Korean Climate Change Assessment Report 2014 : Impacts, Adaptation and Vulnerability. Ministry of Environment.
  28. Myoung, J. S., S. G. Oh, and M. S. Suh, 2012: Improvement of simulated air temperature of regional climate model using linear regression method. Journal of Climate Research, 255-270.
  29. NIMS, 2011: IPCC 5차 평가보고서 대응을 위한 기후 변화 시나리오 보고서 2011. National Institute of Meteorological Research, 1-112.
  30. NIMS, 2012: IPCC 5차 평가보고서 대응을 위한 전지구 기후변화 보고서 2012. National Institute of Meteorological Research, 1-97.
  31. Oh, S. G., and M. S. Suh, 2016: Comparison of projection skills of deterministic ensemble methods using pseudo-simulation data generated from multivariate Gaussian distribution. Theoretical and Applied Climatology, 1-20.
  32. Park, J., M. S. Kang, and I. Song, 2012: Bias correction of RCP-based future extreme precipitation using a quantile mapping method; For 20-weather stations of South Korea. Journal of the Korean Society of Agricultural Engineers, 54(6), 133-142.
  33. Shin, Y., and H. Jung, 2015: Assessing uncertainty in future climate change in Northeast Asia using multiple CMIP5 GCMs with four RCP scenarios. Journal of Environmental Impact Assessment, 24(3), 205-216. https://doi.org/10.14249/eia.2015.24.3.205
  34. So, B. J., M. J. Kim, and H. H. Kwon, 2012: Forecast and assessment of the next generation climate change scenarios of Korea Meteorological Administration. Magazine of Korea Water Resources Association, 45(8), 56-70.
  35. Suh, M. S., S. G. Oh, D. K. Lee, D. H. Cha, S. J. Choi, C. S. Jin, and S. Y. Hong, 2012: Development of new ensemble methods based on the performance skills of regional climate models over South Korea. Journal of Climate, 25(20), 7067-7082. https://doi.org/10.1175/JCLI-D-11-00457.1
  36. Sung M. K., 2016: Intercomparison of prediction skills of ensemble methods using monthly mean temperature simulated by CMIP5 Models, MS thesis, Kongju University. 1-39.
  37. Tebaldi, C., and R. Knutti, 2007: The use of the multi-model ensemble in probabilistic climate projections. Philosophical Transactions of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, 365(1857), 2053-2075. https://doi.org/10.1098/rsta.2007.2076
  38. Wilby, R. L., and S. Dessai, 2010: Robust adaptation to climate change. Weather, 65(7), 180-185. https://doi.org/10.1002/wea.543
  39. Wilby, R. L., L. E. Hay, W. J. Gutowski, R. W. Arritt, E. S. Takle, Z. Pan, G. H. Leavesley, and M. P. Clark, 2000: Hydrological responses to dynamically and statistically downscaled climate model output. Geophysical Research Letters, 27(8), 1199-1202. https://doi.org/10.1029/1999GL006078
  40. Yoon, J. H., L. Ruby Leung, and Jr. Correia, 2012: Comparison of dynamically and statistically downscaled seasonal climate forecasts for the cold season over the United States. Journal of Geophysical Research: Atmospheres, 117(D21).
  41. Yun, J. I., 2010: Agroclimatic maps augmented by a GIS technology. Korean Journal of Agricultural and Forest Meteorology 12, 63-73. (In Korean with English abstract) https://doi.org/10.5532/KJAFM.2010.12.1.063