Secondary Metabolites Produced by Endophytic Fungus, Arthrinium phaeospermum

내생균 Arthrinium phaeospermum이 생산하는 이차대사산물

  • Xia, Xuekui (Key Biosensor Laboratory of Shandong Province, Biology Institute, Shandong Academy of Sciences) ;
  • Shim, Sang Hee (College of Pharmacy, Duksung Women's University)
  • 하설규 (산동과학원 생물학연구소) ;
  • 심상희 (덕성여자대학교 약학대학)
  • Received : 2016.08.30
  • Accepted : 2016.09.22
  • Published : 2016.09.30

Abstract

Endophytic fungi have yielded a variety of secondary metabolites so far. In the course of the project to find bioactive secondary metabolites from cultures of endophytic fungi, an isolate of Arthrinium phaeospermum (JS 0567) was selected for chemical investigation. A large scale culture of this strain in rice media was extracted with an organic solvent and the extract was subjected to a serious of chromatography, which led to six metabolites. Their chemical structures were elucidated as 2,3,6,8-tetrahydroxy-1-methylxanthone(1), 2,3,4,6,8-pentahydroxy-1-methylxanthone(2), 3,4,6,8-tetrahydroxy-1-methylxanthone(3), 3,6,8-trihydroxy-1-methylxanthone(4), 2,4,2',4',6'-pentahydroxy-6-methylbenzophenone(5), and 5,7-di hydroxy-3-methylphthalide(6) on the basis of spectroscopic data. To the best of our knowledge, this is the first study on the secondary metabolites from Arthrinium phaeospermum.

Keywords

References

  1. Bacon, C. W. and White, J. F. (2000) Microbial Endophytes, Marcel Dekker, New York.
  2. Tan, R. X. and Zou, W. X. (2001) Endophytes: a rich source of functional metabolites. Nat. Prod. Rep. 18: 448-459. https://doi.org/10.1039/b100918o
  3. Strobel, G. A., Miller, R. V., Miller, C., Condron, M., Teplow, D. B. and Hess, W. M. (1999) Cryptocandin, a potent antimycotic from the endophytic fungus Cryptosporiopsis cf. quercina. Microbiology 145: 1919-1926. https://doi.org/10.1099/13500872-145-8-1919
  4. Walsh, T. A. (1992) Emerging targets in antibacterial and antifungal chemotherapy. In Sutcliffe, J. A. and Georgopapadakou, N. H. (ed), 349-373, Chapman & Hall, London.
  5. Li, J. Y., Strobel, G. A., Harper, J. K., Lobkovsky, E. and Clardy, J. (2000) Cryptocin, a potent tetramic acid antimycotic from the endophytic fungus Cryptosporiopsis cf. quercina. Org. Lett. 2: 767-770. https://doi.org/10.1021/ol000008d
  6. Strobel, G. A., Li, J. Y., Sugawara, F., Koshino, H., Harper, J. and Hess, W. M. (1999) Oocydin A, a chlorinated macrocyclic lactone with potent anti-oomycete activity from Serratia marcescens. Microbiology 145: 3557-3564. https://doi.org/10.1099/00221287-145-12-3557
  7. Castillo, U. F., Strobel, G. A., Ford, E. J., Hess, W. M., Porter, H., Jensen, J. B., Albert, H., Robison, R., Condron, M. A., Teplow, D. B., Stevens, D. and Yaver, D. (2002) Munumbicins, wide-spectrum antibiotics produced by Streptomyces NRRL 30562, endophytic on Kennedia nigriscans. Microbiology 148: 2675-2685. https://doi.org/10.1099/00221287-148-9-2675
  8. Strobel, G. A., Stierle, A., Stierle, D. and Hess, W. M. (1993) Taxomyces andreanae a proposed new taxon for a bulbilliferous hyphomycete associated with Pacific yew. Mycotaxon 47: 71-78.
  9. Eyberger, A. L., Dondapati, R. and Porter, J. R. (2006) Endophyte fungal isolates from Podophyllum peltatum produce podophyllotoxin. J. Nat. Prod. 69: 1121-1124. https://doi.org/10.1021/np060174f
  10. Kusari, S., Zuhlke, S. and Spiteller, M. (2009) An endophytic fungus from Camptotheca acuminata that produces camptothecin and analogues. J. Nat. Prod. 72: 2-7. https://doi.org/10.1021/np800455b
  11. Kusari, S., Lamshoft, M., Zuhlke, S. and Spiteller, M. (2008) An endophytic fungus from Hypericum perforatum that produces hypericin. J. Nat. Prod. 71: 159-162. https://doi.org/10.1021/np070669k
  12. El-Elimat, T., Raja, H. A., Graf, T. N., Faeth, S. H., Cech, N. B. and Oberlies, N. H. (2014) Flavonolignans from Aspergillus iizukae, a fungal endophyte of milk thistle (Silybum marianum). J. Nat. Prod. 77: 193-199. https://doi.org/10.1021/np400955q
  13. Abdel-Lateff, A., Klemke, C., Konig, G. M. and Wright, A. D. (2003) Two new xanthone derivatives from the algicolous marine fungus Wardomyces anomalus. J. Nat. Prod. 66: 706-708. https://doi.org/10.1021/np020518b
  14. Wang, J., Xu, F., Wang, Z., Lu, X., Wan, J., Yang, B., Zhou, X., Zhang, T., Tu, Z. and Liu, Y. (2014) A new naphthalene glycoside from the sponge- derived fungus Arthrinium sp. ZSDS1- F3. Nat. Prod. Res. 28: 1070-1074. https://doi.org/10.1080/14786419.2014.905935
  15. Ebada, S. S., Schulz, B., Wray, V., Totzke, F., Kubbutat, M., Mueller, W., Hamacher, A., Kassack, M., Lin, W. and Proksch, P. (2011) Arthrinins A-D: Novel diterpenoids and further constituents from the sponge derived fungus Arthrinium sp. Bioorg. Med. Chem. 19: 4644-4651. https://doi.org/10.1016/j.bmc.2011.06.013
  16. Belofsky, G. N., Gloer, K. B., Gloer, J. B., Wicklow, D. T. and Dowd, P. F. (1998) New p-terphenyl and polyketide metabolites from the sclerotia of Penicillium Raistrickii. J. Nat. Prod. 61: 1115-1119. https://doi.org/10.1021/np980188o
  17. Broadbent, D., Mabelis, R. P. and Spencer, H. (1975) 3,6,8- Trihydroxy-1-methylxanthone: an antibacterial metabolite from Penicillium patulum. Phytochemistry 4: 2082-2083.
  18. Mutanyatta, J., Matapa, B. G., Shushub, D. D. and Abegaz, B. M. (2003) Homoisoflavonoids and xanthones from the tubers of wild and in vitro regenerated Ledebouria graminifolia and cytotoxic activities of some of the homoisoflavonoids. Phytochemistry 62: 797-804. https://doi.org/10.1016/S0031-9422(02)00622-2
  19. Harris, C. M., Roberson, J. S. and Harris, T. M. (1976) Biosynthesis of Griseofulvin. J. Am. Chem. Soc. 98: 5380-5386. https://doi.org/10.1021/ja00433a053
  20. Sundholm, E. G. (1978) Total synthesis of lichen xanthones. Tetrahedron 34: 577-586. https://doi.org/10.1016/0040-4020(78)80055-6
  21. Watanabe, M., Tsukazaki, M., Hamada, Y., Iwao, M. and Furukawa, S. (1989) An efficient synthesis of phthalides by Diels-Alder reaction of sulfur-substituted furanones with silyloxydienes: a formal synthesis of mycophenolic acid. Chem. Pharm. Bull. 37: 2948-2951. https://doi.org/10.1248/cpb.37.2948