DOI QR코드

DOI QR Code

Comparison of the Efficiencies of Variable Sampling Intervals Charts for Simultaneous Monitoring the means of multivariate Quality Variables

  • Received : 2016.08.16
  • Accepted : 2016.09.25
  • Published : 2016.09.30

Abstract

When the linear correlation of the quality variables are considerably high, multivariate control charts may be a more effective way than univariate charts which operate quality variables and process parameters individually. Performances and efficiencies of the multivariate control charts under multivariate normal process has been considered. Some numerical results are presented under small scale of the shifts in the process to see the improvement of the efficiency of EWMA chart and CUSUM chart, which use past quality information, comparing to Shewart chart, which do not use quality information. We can know that the decision of the optimum value of the smoothing constant in EWMA structure or the reference value in CUSUM structure are very important whether we adopt combine-accumulate technique or accumulate-combine technique under the given condition of process.

Keywords

References

  1. F. B. Alt, "Multivariate quality control" in Encyclopedia of Statistical Sciences, eds. S. Kotz and Johnson, New York: John Wiley, 1985.
  2. J. E. Jackson, "Multivariate quality control", Commun. Stati.-Theor. M., Vol. 14, pp. 2657-2688, 1985. https://doi.org/10.1080/03610928508829069
  3. K. Tuprah and W. H. Woodall, "Bivariate dispersion quality control charts", Commun. Stat.-Simul. C., Vol. 15, pp. 505-522, 1986. https://doi.org/10.1080/03610918608812521
  4. A. I. Goel and S. M. Wu, "Determination of A.R.L. and a contour nomogram for cusum charts to control normal mean", Technometrics, Vol. 13, pp. 221-230, 1971.
  5. W. D. Ewan and K. W. Kemp, "Sampling inspection of continuous processes with no autocorrelation between successive results", Biometrica, Vol. 47, pp. 363-380, 1960. https://doi.org/10.1093/biomet/47.3-4.363
  6. C. S. Van and D. D. Bruyn, "Cumulative sum tests: theory and practice" in Griffin's Statistical Monographs and Courses, London: Griffi, 1968.
  7. J. M. Lucas and M. S. Saccucci, "Exponentially weighted moving average control schemes: properties and enhancements", Technometrics, Vol. 32, pp. 1-12, 1990. https://doi.org/10.1080/00401706.1990.10484583
  8. C. D. Im and G. Y. Cho, "Multiparameter CUSUM charts with variable sampling intervals", Journal of the Korean Data & Information Science Society, Vol. 20, pp. 593-599, 2009.
  9. R. B. Crosier, "Multivariate generalization of cumulative sum quality-control scheme", Technometrics, Vol. 30, pp 291-303, 1988. https://doi.org/10.1080/00401706.1988.10488402
  10. C. A. Lowry, W. H. Woodall, C. W. Champ, and S. E. Rigdon. "A Multivariate exponentially weighted moving average control charts", Technometrics, Vol. 34, pp 46-53. 1992. https://doi.org/10.2307/1269551
  11. J. J. Jr. Pignatiello and G. C. Runger, "Comparisons of multivariate CUSUM charts", J. Qual. Technol., Vol. 22, pp 173-186. 1990. https://doi.org/10.1080/00224065.1990.11979237
  12. M. R. Reynolds, R. W. Amin, J. C. Arnold, and J. A. Nachlas, "X-charts with variable sampling intervals", Technometrics, Vol. 30, pp 181-192. 1988.
  13. D. J. Chang, "Comparison of two sampling intervals and three sampling intervals VSI charts for monitoring both means and variances", Journal of the Korean Data & Information Science Society, Vol. 26, pp. 997-1006, 2015. https://doi.org/10.7465/jkdi.2015.26.4.997