DOI QR코드

DOI QR Code

Faster Than Nyquist Transmission Method for Throughput Improvement in Underwater Communication

수중 통신에서 전송률 향상을 위한 Faster Than Nyquist 전송기법 연구

  • Baek, Chang-uk (Department of Radio Communication Engineering, Korea Maritime and Ocean University) ;
  • Jung, Ji-won (Department of Radio Communication Engineering, Korea Maritime and Ocean University)
  • Received : 2016.04.20
  • Accepted : 2016.04.21
  • Published : 2016.09.30

Abstract

Underwater communication has multipath error because of reflection by sea-level and sea-bottom. The multipath of underwater channel causes signal distortion and error floor. The excessive multipath encountered in underwater communication channel creates inter symbol interference, which is a limiting factor to achieve a high data rate and bit error rate performance. Therefore, to increase throughput efficiency and improve performance, this paper consider FTN (Faster-than-Nyquist) signalling based on turbo equalization. FTN signalling is a technique of transmitting information at a rate higher than the allowed Nyquist limit. This paper presented efficient decoder structure of FTN transmission in the environment of multipath underwater channel and we compare the performance between FTN method and conventional punctured method in lake experimentation. As a results of lake experiment, we confirmed FTN method based on turbo equalization is applicable and efficiency in underwater communication.

수중에서의 통신은 해수면 및 해저면 등에 의한 신호의 반사를 통해 다중경로 현상이 나타난다. 이러한 다중경로의 영향으로 신호는 왜곡되고 원할한 수신을 방해받게 된다. 또한, 수중 통신은 제한된 주파수를 사용하고 다중 경로로 인한 심볼 내 간섭으로 전송률이 매우 낮고 성능이 저하된다. 따라서 본 논문에서는 수중통신 환경에서 전송률 향상 및 성능 향상을 위해 터보 등화 기법 기반의 Faster Than Nyquist 전송방식을 고려한다. 무선 통신에서 전송률 향상을 위해 적용되고 있는 Nyquist 속도보다 빠르게 전송하는 Faster Than Nyquist 기법에 대해 다중 간섭이 존재하는 수중 환경에서 효율적인 복호 모델을 제시하고 기존의 전송률 향상에 고려되는 천공 부호화 방식과 실제 호수 실험을 통하여 성능을 비교 분석하였으며, 적용 가능성 및 효율성을 확인하였다.

Keywords

References

  1. M. Stojanovic, J. A. Catipovic and J. G. Proakis, "Phase-coherent digital communications for underwater acoustic channels," IEEE J. Oceanic Eng., vol. 19, no.1, pp. 100-111, Jan. 1994. https://doi.org/10.1109/48.289455
  2. D. B. Kilfoyle and A. B. Baggeroer, "The state of the art in underwater acoustic telemetry," IEEE J. Oceanic Eng., vol. 25, no.1, pp. 4-27, Jan. 2000. https://doi.org/10.1109/48.820733
  3. J. T. Bae, M. H. Kim, S. S. Choi, J. W. Jung, S. Y. Chun, and K. C. Dho, "The analysis about channel code performance of underwater channel," J. Acoust. Soc. Kr., vol. 27, no.6, pp. 286-295, 2008.
  4. G. J. Foschini and M. J. Gans, "On Limits of Wireless Communication in a Fading Environment when Using Multiple Antennas," Wireless Personal Commun., vol. 6, no.3, pp. 311-335, Mar. 1998. https://doi.org/10.1023/A:1008889222784
  5. T. D. Park, M. H. Kim, B. S. Lim, and J. W. Jung, "Performance Analysis of Underwater Communication Channel Using LDPC Codes in the MISO Channel," J. KICS, vol. 36, no. 7B, pp. 878-885, 2011.
  6. B. Li, S. Zhou, M. Stojanovic, L. Freitag, and P. Willett, "Multicarrier communication over underwater acoustic channels with nonuniform doppler shifts," IEEE J. Ocean. Eng., vol. 33, no. 2, pp. 198-209, June 2008. https://doi.org/10.1109/JOE.2008.920471
  7. A. D. Liveris and C. N. Georghiades, "Exploiting faster-than-Nyquist signaling," IEEE Trans. Commun., vol. 51, no. 9, pp. 1502-1511, Sep. 2003. https://doi.org/10.1109/TCOMM.2003.816943
  8. F. Rusek and J. B. Anderson, "Multistream Faster than Nyquist Signaling," IEEE Trans. Communication, vol. 57, no. 5, pp. 1329-1340, May 2009. https://doi.org/10.1109/TCOMM.2009.05.070224
  9. J. B. Cain, G. C. Clark Jr. and J. M. Geist, "Punctured convolutional codes of rate (n-1)/n and simplified maximum likelihood decoding," IEEE Trans. Inform. Theory, vol. IT-25, no. 1, pp. 97-100, Jan. 1979.
  10. D. Haccoun and G. Begin, "High-rate punctured convolutional codes for Viterbi and sequential decoding," IEEE Trans. Communication, vol. 37, no. 11, pp. 1113-1125, Nov. 1989. https://doi.org/10.1109/26.46505
  11. J. B. Anderson, A. Prlja and F. Rusek, "New reduced state space BCJR algorithms for the ISI channel," in Proc. 2009 IEEE Int. Symp. Inform. Theory, Seoul, Korea, pp. 889-893, 2009.
  12. M. Tuchler, R. Koetter, and A. C. Singer, "Turbo equalization: Principles and new results," IEEE Trans. Communication, vol. 50, no. 5, pp. 754-767, May 2002. https://doi.org/10.1109/TCOMM.2002.1006557
  13. R. Koetter, A. C. Singer, and M. Tuechler, "Turbo equalization," IEEE Signal Process. Mag., vol. 21, no. 1, pp. 67-80, Jan. 2004. https://doi.org/10.1109/MSP.2004.1267050
  14. K. Berberdis, T. Rontogiannis, and S. Theodoridis, "Efficient block implementation of the LMS based DFE," in Proc. 13th Digital Signal Processing Int. Conf., Santorini, Greece, pp. 143-146, 1997.