References
- Abd-Elmeguid A, Yu DC. Dental pulp neurophysiology: Part 1. clinical and diagnostic implications. J Can Dent Assoc. 2009;75:55-59.
- Park YK, Kim HJ. A trial of screening of genes involved in odontoblasts differentiation from human dental pulp stem cells. Int J Oral Biol. 2012;37:167-174. doi: http://dx.doi.org/10.11620/IJOB.2012.37.4.167
- Nakashima M, Iohara K. Regeneration of dental pulp by stem cells. Adv Dent Res. 2011;23:313-319. doi: 10.1177/0022034511405323.
- Tran-Hung L, Mathieu S, About I. Role of human pulp fibroblasts in angiogenesis. J Dent Res. 2006;85:819-823. doi: 10.1177/154405910608500908.
- Carmeliet P, Jain RK. Angiogenesis in cancer and other diseases. Nature. 2000;407:249-257. doi: 10.1038/35025220.
- Artese L, Rubini C, Ferrero G, Fioroni M, Santinelli A, Piattelli A. Vascular endothelial growth factor (VEGF) expression in healthy and inflamed human dental pulps. J Endod. 2002;28:20-23. doi: http://dx.doi.org/10.1097/00004770-200201000-00005.
- Mullane EM, Dong Z, Sedgley CM, Hu JC, Botero TM, Holland GR, Nor JE. Effects of VEGF and FGF2 on the revascularization of severed human dental pulps. J Dent Res. 2008;87:1144-1148. doi: 10.1177/154405910808701204
- Bergers G, Benjamin LE. Tumorigenesis and the angiogenic switch. Nat Rev Cancer. 2003;3:401-410. doi: 10.1038/nrc1093.
- Li L, Zhu YQ, Jiang L, Peng W, Ritchie HH. Hypoxia promotes mineralization of human dental pulp cells. J Endod. 2011;37:799-802. doi: 10.1016/j.joen.2011.02.028.
- Fukuyama Y, Ohta K, Okoshi R, Suehara M, Kizaki H, Nakagawa K. Hypoxia induces expression and activation of AMPK in rat dental pulp cells. J Dent Res. 2007;86:903-907. doi: 10.1177/154405910708600919.
- Ito K, Matsuoka K, Matsuzaka K, Morinaga K, Inoue T. Hypoxic condition promotes differentiation and mineralization of dental pulp cells in vivo. Int Endod J. 2015;48:115-123. doi: 10.1111/iej.12288.
- Sakdee JB, White RR, Pagonis TC, Hauschka PV. Hypoxia-amplified proliferation of human dental pulp cells. J Endod. 2009;35:818-823. doi: 10.1016/j.joen.2009.03.001.
- Aranha AM, Zhang Z, Neiva KG, Costa CA, Hebling J, Nor JE. Hypoxia enhances the angiogenic potential of human dental pulp cells. J Endod. 2010;36:1633-1637. doi: 10.1016/j.joen.2010.05.013.
- Kitagawa M, Ueda H, Iizuka S, Sakamoto K, Oka H, Kudo Y, Ogawa I, Miyauchi M, Tahara H, Takata T. Immortalization and characterization of human dental pulp cells with odontoblastic differentiation. Arch Oral Biol. 2007;52:727-731. doi: 10.1016/j.archoralbio.2007.02.006
- Semenza GL. Hypoxia-inducible factors in physiology and medicine. Cell. 2012;148:399-408. doi: 10.1016/j.cell.2012.01.021.
- Jokilehto T, Jaakkola PM. The role of HIF prolyl hydroxylases in tumour growth. J Cell Mol Med. 2010;14:758-770. doi: 10.1111/j.1582-4934.2010.01030.x.
- Kim S, Liu M, Simchon S, Dorscher-Kim JE. Effects of selected inflammatory mediators on blood flow and vascular permeability in the dental pulp. Proc Finn Dent Soc. 1992;88 Suppl 1:387-392.
- Tran-Hung L, Laurent P, Camps J, About I. Quantification of angiogenic growth factors released by human dental cells after injury. Arch Oral Biol. 2008;53:9-13. doi: 10.1016/j.archoralbio.2007.07.001
- Kajdaniuk D, Marek B, Foltyn W, Kos-Kudla B. Vascular endothelial growth factor (VEGF) - part 1: In physiology and pathophysiology. Endokrynol Pol. 2011;62:444-455.
- Goncalves SB, Dong Z, Bramante CM, Holland GR, Smith AJ, Nor JE. Tooth slice-based models for the study of human dental pulp angiogenesis. J Endod. 2007;33:811-814. doi: 10.1016/j.joen.2007.03.012
- Mantellini MG, Botero T, Yaman P, Dennison JB, Hanks CT, Nor JE. Adhesive resin and the hydrophilic monomer HEMA induce VEGF expression on dental pulp cells and macrophages. Dent Mater. 2006;22:434-440. doi: 10.1016/j.dental.2005.04.039
- Mathieu S, El-Battari A, Dejou J, About I. Role of injured endothelial cells in the recruitment of human pulp cells. Arch Oral Biol. 2005;50:109-113. doi: 10.1016/j.archoralbio.2004.11.008
- Goldberg M, Smith AJ. Cells and extracellular matrices of dentin and pulp: A biological basis for repair and tissue engineering. Crit Rev Oral Biol Med. 2004;15:13-27. doi: 10.1177/154411130401500103
- Bertout JA, Patel SA, Simon MC. The impact of O2 availability on human cancer. Nat Rev Cancer. 2008;8:967-975. doi: 10.1038/nrc2540
- Pear WS, Simon MC. Lasting longer without oxygen: The influence of hypoxia on notch signaling. Cancer Cell. 2005;8:435-437. doi: 10.1016/j.ccr.2005.11.016
- Deng L, Chen N, Li Y, Zheng H, Lei Q. CXCR6/CXCL16 functions as a regulator in metastasis and progression of cancer. Biochim Biophys Acta. 2010;1806:42-49. doi: 10.1016/j.bbcan.2010.01.004
- Matloubian M, David A, Engel S, Ryan JE, Cyster JG. A transmembrane CXC chemokine is a ligand for HIVcoreceptor bonzo. Nat Immunol. 2000;1:298-304. doi: 10.1038/79738
- Shimaoka T, Kume N, Minami M, Hayashida K, Kataoka H, Kita T, Yonehara S. Molecular cloning of a novel scavenger receptor for oxidized low density lipoprotein, SR-PSOX, on macrophages. J Biol Chem. 2000;275:40663-40666. doi: 10.1074/jbc.C000761200
- Luster AD. Chemokines--chemotactic cytokines that mediate inflammation. N Engl J Med. 1998;338:436-445. doi: 10.1056/NEJM199802123380706
- Zhuge X, Murayama T, Arai H, Yamauchi R, Tanaka M, Shimaoka T, Yonehara S, Kume N, Yokode M, Kita T. CXCL16 is a novel angiogenic factor for human umbilical vein endothelial cells. Biochem Biophys Res Commun. 2005;331:1295-1300. doi: 10.1016/j.bbrc.2005.03.200