DOI QR코드

DOI QR Code

Effect of hypoxia on angiogenesis-related proteins in human dental pulp cells

  • Kim, Mi-Kyoung (Department of Oral Physiology, School of Dentistry, Pusan National University) ;
  • Kim, So-Jeong (Department of Oral Physiology, School of Dentistry, Pusan National University) ;
  • Kim, Yeon (Department of Oral Physiology, School of Dentistry, Pusan National University) ;
  • Park, Hyun-Joo (Department of Oral Physiology, School of Dentistry, Pusan National University) ;
  • Jo, Min-Jee (Department of Oral Physiology, School of Dentistry, Pusan National University) ;
  • Bae, Soo-Kyung (Department of Dental Pharmacology, School of Dentistry, Pusan National University) ;
  • Kim, Hyung Joon (Department of Oral Physiology, School of Dentistry, Pusan National University) ;
  • Bae, Moon-Kyoung (Department of Oral Physiology, School of Dentistry, Pusan National University)
  • Received : 2016.08.26
  • Accepted : 2016.09.24
  • Published : 2016.09.30

Abstract

Dental pulp is a highly vascularized tissue with high regenerative potential. Revascularization of severed vasculature in the tooth is required for pulp healing during avulsed tooth treatment. In this study, the relative expression of angiogenesis-related proteins was determined in human dental pulp cells using a human angiogenesis proteome profiler array. The proteome profiler array detected differentially expressed angiogenesis-related factors under conditions of hypoxia, which enhances the angiogenic potential of dental pulp cells. We confirmed that hypoxia regulates the mRNA expression of angiogenesis-related factors, including CXCL16 in dental pulp cells. Furthermore, conditioned media of hypoxic pulp cells induced tube-like structures of vascular endothelial cells, which were reduced by the neutralization of CXCL16 function. In conclusion, our data show that angiogenesis-related factors are differentially expressed by hypoxia in dental pulp cells and suggest that CXCL16 may involve in the revascularization of hypoxic dental pulp.

Keywords

References

  1. Abd-Elmeguid A, Yu DC. Dental pulp neurophysiology: Part 1. clinical and diagnostic implications. J Can Dent Assoc. 2009;75:55-59.
  2. Park YK, Kim HJ. A trial of screening of genes involved in odontoblasts differentiation from human dental pulp stem cells. Int J Oral Biol. 2012;37:167-174. doi: http://dx.doi.org/10.11620/IJOB.2012.37.4.167
  3. Nakashima M, Iohara K. Regeneration of dental pulp by stem cells. Adv Dent Res. 2011;23:313-319. doi: 10.1177/0022034511405323.
  4. Tran-Hung L, Mathieu S, About I. Role of human pulp fibroblasts in angiogenesis. J Dent Res. 2006;85:819-823. doi: 10.1177/154405910608500908.
  5. Carmeliet P, Jain RK. Angiogenesis in cancer and other diseases. Nature. 2000;407:249-257. doi: 10.1038/35025220.
  6. Artese L, Rubini C, Ferrero G, Fioroni M, Santinelli A, Piattelli A. Vascular endothelial growth factor (VEGF) expression in healthy and inflamed human dental pulps. J Endod. 2002;28:20-23. doi: http://dx.doi.org/10.1097/00004770-200201000-00005.
  7. Mullane EM, Dong Z, Sedgley CM, Hu JC, Botero TM, Holland GR, Nor JE. Effects of VEGF and FGF2 on the revascularization of severed human dental pulps. J Dent Res. 2008;87:1144-1148. doi: 10.1177/154405910808701204
  8. Bergers G, Benjamin LE. Tumorigenesis and the angiogenic switch. Nat Rev Cancer. 2003;3:401-410. doi: 10.1038/nrc1093.
  9. Li L, Zhu YQ, Jiang L, Peng W, Ritchie HH. Hypoxia promotes mineralization of human dental pulp cells. J Endod. 2011;37:799-802. doi: 10.1016/j.joen.2011.02.028.
  10. Fukuyama Y, Ohta K, Okoshi R, Suehara M, Kizaki H, Nakagawa K. Hypoxia induces expression and activation of AMPK in rat dental pulp cells. J Dent Res. 2007;86:903-907. doi: 10.1177/154405910708600919.
  11. Ito K, Matsuoka K, Matsuzaka K, Morinaga K, Inoue T. Hypoxic condition promotes differentiation and mineralization of dental pulp cells in vivo. Int Endod J. 2015;48:115-123. doi: 10.1111/iej.12288.
  12. Sakdee JB, White RR, Pagonis TC, Hauschka PV. Hypoxia-amplified proliferation of human dental pulp cells. J Endod. 2009;35:818-823. doi: 10.1016/j.joen.2009.03.001.
  13. Aranha AM, Zhang Z, Neiva KG, Costa CA, Hebling J, Nor JE. Hypoxia enhances the angiogenic potential of human dental pulp cells. J Endod. 2010;36:1633-1637. doi: 10.1016/j.joen.2010.05.013.
  14. Kitagawa M, Ueda H, Iizuka S, Sakamoto K, Oka H, Kudo Y, Ogawa I, Miyauchi M, Tahara H, Takata T. Immortalization and characterization of human dental pulp cells with odontoblastic differentiation. Arch Oral Biol. 2007;52:727-731. doi: 10.1016/j.archoralbio.2007.02.006
  15. Semenza GL. Hypoxia-inducible factors in physiology and medicine. Cell. 2012;148:399-408. doi: 10.1016/j.cell.2012.01.021.
  16. Jokilehto T, Jaakkola PM. The role of HIF prolyl hydroxylases in tumour growth. J Cell Mol Med. 2010;14:758-770. doi: 10.1111/j.1582-4934.2010.01030.x.
  17. Kim S, Liu M, Simchon S, Dorscher-Kim JE. Effects of selected inflammatory mediators on blood flow and vascular permeability in the dental pulp. Proc Finn Dent Soc. 1992;88 Suppl 1:387-392.
  18. Tran-Hung L, Laurent P, Camps J, About I. Quantification of angiogenic growth factors released by human dental cells after injury. Arch Oral Biol. 2008;53:9-13. doi: 10.1016/j.archoralbio.2007.07.001
  19. Kajdaniuk D, Marek B, Foltyn W, Kos-Kudla B. Vascular endothelial growth factor (VEGF) - part 1: In physiology and pathophysiology. Endokrynol Pol. 2011;62:444-455.
  20. Goncalves SB, Dong Z, Bramante CM, Holland GR, Smith AJ, Nor JE. Tooth slice-based models for the study of human dental pulp angiogenesis. J Endod. 2007;33:811-814. doi: 10.1016/j.joen.2007.03.012
  21. Mantellini MG, Botero T, Yaman P, Dennison JB, Hanks CT, Nor JE. Adhesive resin and the hydrophilic monomer HEMA induce VEGF expression on dental pulp cells and macrophages. Dent Mater. 2006;22:434-440. doi: 10.1016/j.dental.2005.04.039
  22. Mathieu S, El-Battari A, Dejou J, About I. Role of injured endothelial cells in the recruitment of human pulp cells. Arch Oral Biol. 2005;50:109-113. doi: 10.1016/j.archoralbio.2004.11.008
  23. Goldberg M, Smith AJ. Cells and extracellular matrices of dentin and pulp: A biological basis for repair and tissue engineering. Crit Rev Oral Biol Med. 2004;15:13-27. doi: 10.1177/154411130401500103
  24. Bertout JA, Patel SA, Simon MC. The impact of O2 availability on human cancer. Nat Rev Cancer. 2008;8:967-975. doi: 10.1038/nrc2540
  25. Pear WS, Simon MC. Lasting longer without oxygen: The influence of hypoxia on notch signaling. Cancer Cell. 2005;8:435-437. doi: 10.1016/j.ccr.2005.11.016
  26. Deng L, Chen N, Li Y, Zheng H, Lei Q. CXCR6/CXCL16 functions as a regulator in metastasis and progression of cancer. Biochim Biophys Acta. 2010;1806:42-49. doi: 10.1016/j.bbcan.2010.01.004
  27. Matloubian M, David A, Engel S, Ryan JE, Cyster JG. A transmembrane CXC chemokine is a ligand for HIVcoreceptor bonzo. Nat Immunol. 2000;1:298-304. doi: 10.1038/79738
  28. Shimaoka T, Kume N, Minami M, Hayashida K, Kataoka H, Kita T, Yonehara S. Molecular cloning of a novel scavenger receptor for oxidized low density lipoprotein, SR-PSOX, on macrophages. J Biol Chem. 2000;275:40663-40666. doi: 10.1074/jbc.C000761200
  29. Luster AD. Chemokines--chemotactic cytokines that mediate inflammation. N Engl J Med. 1998;338:436-445. doi: 10.1056/NEJM199802123380706
  30. Zhuge X, Murayama T, Arai H, Yamauchi R, Tanaka M, Shimaoka T, Yonehara S, Kume N, Yokode M, Kita T. CXCL16 is a novel angiogenic factor for human umbilical vein endothelial cells. Biochem Biophys Res Commun. 2005;331:1295-1300. doi: 10.1016/j.bbrc.2005.03.200