DOI QR코드

DOI QR Code

Synthesis of Three-Dimensional Graphene Using Porous Nickel Nanostructure

다공성 니켈 나노 구조체를 이용한 3차원 그래핀의 합성

  • Song, Wooseok (Thin Film Materials Research Center, Korea Research Institute of Chemical Technology) ;
  • Myung, Sung (Thin Film Materials Research Center, Korea Research Institute of Chemical Technology) ;
  • Lee, Sun Sook (Thin Film Materials Research Center, Korea Research Institute of Chemical Technology) ;
  • Lim, Jongsun (Thin Film Materials Research Center, Korea Research Institute of Chemical Technology) ;
  • An, Ki-Seok (Thin Film Materials Research Center, Korea Research Institute of Chemical Technology)
  • Received : 2016.08.16
  • Accepted : 2016.08.30
  • Published : 2016.08.31

Abstract

Graphene has been a valuable candidate for use as electrodes for supercapacitors. In order to improve the surface area of graphene, three-dimensional graphene was synthesized on porous Ni nanostructure using thermal chemical vapor deposition and microwave plasma chemical vapor deposition. The structural and chemical characterization of synthesized graphene was performed by scanning electron microscopy, Raman spectroscopy, and X-ray photoelectron spectroscopy. It was confirmed that three-dimensional and high-crystalline multilayer graphene onto various substrates was synthesized successfully.

그래핀은 저차원 구조에서 기인하는 우수한 특성으로 인해 슈퍼커패시터의 전극소재로 응용이 가능한 소재이다. 본 연구에서는 2차원 구조인 그래핀의 비 표면적 향상을 위해 다공성 니켈 나노구조체 표면에 열 화학기상증착법과 마이크로웨이브 플라즈마 화학기상증착법을 이용하여 3차원의 그래핀을 합성하였다. 주사전자현미경, 라만 분광법, X-선 광전자 분광법을 통해 합성된 그래핀의 구조적, 화학적 특성을 분석한 결과, 3차원 구조의 우수한 결정성을 지니는 다중층 그래핀이 다양한 기판 위에 합성된 것을 확인할 수 있었다.

Keywords

References

  1. Novoselov, K.S., Geim, A.K., Morozov, S.V., Jiang, D., Zhang, Y., Dubonos, S.V., Grigorieva, I.V., and Firsov, A.A., "Electric Field Effect in Atomically Thin Carbon Films," Science, Vol. 306, 2004, pp. 666-669. https://doi.org/10.1126/science.1102896
  2. Novoselov, K.S., Jiang, Z., Zhang, Y., Morozov, S.V., Stormer, H.L., Zeitler, U., Maan, J.C., Boebinger, G.S., Kim, P., and Geim, A.K., "Room-Temperature Quantum Hall Effect in Graphene," Science, Vol. 315, 2007, pp. 1379. https://doi.org/10.1126/science.1137201
  3. Nair, R.R., Blake, P., Grigorenko, A.N., Novoselov, K.S., Booth, T.J., Stauber, T., Peres, N.M.R., and Geim, A.K., "Fine Structure Constant Defines Visual Transparency of Graphene," Science, Vol. 320, 2008, pp. 1308. https://doi.org/10.1126/science.1156965
  4. Li, X., Wang, X., Zhang, L., Lee, S., and Dai, H., "Chemically Derived, Ultrasmooth Graphene Nanoribbon Semiconductors," Science, Vol. 319, 2008, pp. 1229-1232. https://doi.org/10.1126/science.1150878
  5. Jiao, L., Wang, X., Diankov, G., Wang, H., and Dai, H., "Facile Synthesis of High-quality Graphene Nanoribbons," Nat. Nanotechnol., Vol. 5, 2010, pp. 321-325. https://doi.org/10.1038/nnano.2010.54
  6. Song, W., Kim, S.Y., Kim, Y., Kim, S.H., Lee, S.I., Song, I., Jeon, C., and Park, C.-Y., "Site-Specific Growth of Width-Tailored Graphene Nanoribbons on Insulating Substrates," J. Phys. Chem. C, Vol. 116, 2012, pp. 20023-20029. https://doi.org/10.1021/jp303409c
  7. Kim, K.W., Song, W., Jung, M.W., Kang, M.-A., Kwon, S.Y., Myung, S., Lim, J., Lee, S.S., and An, K.-S., "Au Doping Effect on Chemically-Exfoliated Graphene and Graphene Grown via Chemical Vapor Deposition," Carbon, Vol. 82, 2015, pp. 96-102. https://doi.org/10.1016/j.carbon.2014.10.036
  8. Kim, S.H., Song, W., Jung, M.W., Kang, M.-A., Kim, K., Chang, S.-J., Lee, S.S., Lim, J., Hwang, J., Myung, S., and An, K.-S., "Carbon Nanotube and Graphene Hybrid Thin Film for Transparent Electrodes and Field Effect Transistors," Adv. Mater., Vol. 26, 2014, pp. 4247-4252. https://doi.org/10.1002/adma.201400463
  9. Song, W., Kim, Y., Kim, S.H., Kim, S.Y., Cha, M.-J., Song, I., Jung, D.S., Jeon, C., Lim, T., Lee, S., Ju, S., Choi, W.C., Jung, M.W., An, K.-S., and Park, C.-Y., "Homogeneous and Stable ptype Doping of Graphene by MeV Electron Beam-Stimulated Hybridization with ZnO Thin Films," Appl. Phys. Lett., Vol. 102, 2013, pp. 053103. https://doi.org/10.1063/1.4790161
  10. Yan, Z., Ma, L., Zhu, Y., Lahiri, I., Hahm, M.G., Liu, Z., Yang, S., Xiang, C., Lu, W., Peng, Z., Sun, Z., Kittrell, C., Lou, J., Choi, W., Ajayan, P.M., and Tour, J.M., "Three-Dimensional Metal- Graphene-Nanotube Multifunctional Hybrid Materials", ACS Nano, Vol. 7, 2013, pp. 58-64. https://doi.org/10.1021/nn3015882
  11. Chen, J., Sheng, K., Luo, P., Li, C., and Shi, G., "Graphene Hydrogels Deposited in Nickel Foams for High-Rate Electrochemical Capacitors", Adv. Mater., Vol. 24, 2012, pp. 4569-4573. https://doi.org/10.1002/adma.201201978
  12. Chae, S.J., Gunes, F., Kim, K.K., Kim, E.S., Han, G.H., Kim, S.M., Shin, H.-J., Yoon, S.-M., Choi, J.-Y., Park, M.H., Yang, C.W., Pribat, D., and Lee, Y.E., "Synthesis of Large-Area Graphene Layers on Poly-Nickel Substrate by Chemical Vapor Deposition: Wrinkle Formation," Adv. Mater., Vol. 21, 2009, pp. 2328-2333. https://doi.org/10.1002/adma.200803016
  13. Yu, Q., Lian, J., Siriponglert, S., Li, H., Chen, Y.P., and Pei, S.- S., "Graphene Segregated on Ni Surfaces and Transferred to Insulators", Appl. Phys. Lett., Vol. 93, 2008, pp. 113103. https://doi.org/10.1063/1.2982585
  14. Song, W., Jeon, C., Kim, S.Y., Kim, Y., Kim, S.H., Lee, S.-I, Jung, D.S., Jung, M.W., An, K.-S., and Park, C.-Y., "Two Selective Growth Modes for Graphene on a Cu Substrate Using Thermal Chemical Vapor Deposition", Carbon, Vol. 68, 2014, pp. 87-94. https://doi.org/10.1016/j.carbon.2013.10.039
  15. Li, X., Zhu, Y., Cai, W., Borysiak, M., Han, B., Chen, D., Piner, R.D., Colombo, L., and Ruoff, R.S., "Transfer of Large-Area Graphene Films for High-Performance Transparent Conductive Electrodes," Nano Lett., Vol. 9, 2009, pp. 4359-4363. https://doi.org/10.1021/nl902623y