DOI QR코드

DOI QR Code

융복합 시대 게임 사용자들의 유저 커뮤니티 참여 의도에 영향을 미치는 선행 요인에 관한 연구

A Study on Antecedents of Game User Participation Intention in User Community in an Era of Convergence

  • 투고 : 2016.06.30
  • 심사 : 2016.08.20
  • 발행 : 2016.08.28

초록

여러 게임 개발업체 및 유통업체들은 R&D 비용을 낮추고 게임에 대한 충성도를 높이기 위해 오픈 이노베이션 전략을 사용하고 있다. 사용들은 유저 커뮤니티를 통해 게임 정보나 스킬을 공유하기 때문에 유저 커뮤니티는 게임에 대한 관심을 증가시키는데 중요한 역할을 담당한다. 이런 맥락에서 본 연구에서는 유저 커뮤니티 참여 의도에 영향을 미치는 선행 요인들을 살펴보고자 한다. 합리적 행동이론에 지각된 위험을 통합하여 연구 모형을 개발하였다. 110명의 서든어택 게임 사용자들을 대상으로 제안한 연구 모형을 검증하였으며, PLS를 활용하였다. 본 연구 모형 분석 결과, 지각된 유용성과 지각된 유희성은 커뮤니티에 대한 태도 형성에 핵심적인 역할을 담당하였다. 하지만 지각된 위험은 예상한 것과 다르게 지각된 유용성, 지각된 유희성, 커뮤니티에 대한 태도, 참여 의도 모두 유의한 영향을 미치지 않았다. 커뮤니티에 대한 태도는 커뮤니티 참여 의도에 유의한 영향을 미쳤지만, 주관적 규범은 커뮤니티 참여 의도에 유의한 영향을 미치지 못하였다. 본 연구 모형 분석 결과를 통해 게임 개발업체 및 유통업체는 유저 커뮤니티를 활성화할 수 있는 효과적인 전략 및 정책을 수립할 수 있을 것으로 기대된다.

Several game developers or publishers adopt open innovation strategies to reduce R&D costs and increase user loyalty about their games. User communities play an important role in increasing users' interests in the game because they can share game information and skills in user communities. In this regard, this study explored key antecedents of game user participation intention in user community. We developed a research model by integrating perceived risk into theory of planned action. The theoretical model was tested by using survey data collected from 110 "Suddenattack" game users. Partial least squares (PLS) was utilized to analysis the research model. The findings of this study indicate that both perceived usefulness and perceived enjoyment play an important role in forming attitude toward community. However, contrast to our expectations, perceived risk has no signifiant effect on perceived usefulness, perceived enjoyment, attitude toward community and participation intention. While attention toward community significantly influences community participation intention, social norms are not significantly related to it. The analysis results help game developers or publishers establish effective strategies and policies to increase user participation intention in user community.

키워드

참고문헌

  1. J. S. Kim, T. Y. Lee, T. G. Kim and H. W. Jung, “Studies on the development scheme and the current state of Korea game industry,” Journal of Digital Convergence, Vol. 13, No. 1, pp. 439-447, 2015.
  2. E. Von Hippel and G. Von Krogh, “Open source software and the private collective innovation model,” Organization Science, Vol. 14, No. 2, pp. 209-223, 2003. https://doi.org/10.1287/orsc.14.2.209.14992
  3. Y. S. Hau and Y. G. Kim, “Why would online gamers share their innovation-conductive knowledge in the online game user community? Integrating individual motivations and social capital perspectives,” Computer in Human Behavior, Vol. 27, No. 2, pp. 956-970, 2011. https://doi.org/10.1016/j.chb.2010.11.022
  4. H. Cho, “Study on effect of characteristics of financial professionals on knowledge sharing, job satisfaction, and firm innovation,” Journal of Digital Convergence, Vol. 11, No. 10, pp. 225-240, 2013. https://doi.org/10.14400/JDPM.2013.11.10.225
  5. D. S. Kwon and J. H. Kim, “An effects of self-determination theory on social presence in online community,” Journal of Digital Convergence, Vol. 9, No. 2, pp. 81-94, 2011.
  6. B. W. Yu and S. B. Park, “The effect of online game community efficiency on online game community commitment,” Korean Management Consulting Review, Vol. 9, No. 3, pp. 105-125, 2009.
  7. S. B. Park and N. H. Jung, “A factors affecting self presentation desire and participation intention in online game,” The E-Business Studies, Vol. 11, No. 5, pp. 291-308, 2010.
  8. J. H. Wi and I. S. Song, “An empirical study on community effect of MMORPG guild,” Journal of Korea Game Society, Vol. 10, No. 4, pp. 49-61, 2010.
  9. C. J. Yang, “Study on the juvenile culture of community within online game,” Korean Journal of Youth Studies, Vol. 13, No. 6, pp. 386-409, 2006.
  10. H. I. Kwon and Y. S. Choi, "A study on on-line game market segmentation classification and discrimination variable," Journal of the Korean Society for Computer Game, Vol. 14, pp. 53-61, 2008.
  11. Y. Han, S Shim, D., Kong, E. Hwang, S. Rim, “The impact of online game interactivity on user loyalty: Focused on the type of games,” Journal of Business Research, Vol. 28, No. 1, pp. 57-84, 2013.
  12. J. J. Jung, C. M. Chang and T. U. Kim, “An exploratory study for identifying key factors in online gamers development strategy utilizing Web community,” The KIPS transactions: PartD, Vol. 11D, No. 4, pp. 991-1002, 2004. https://doi.org/10.3745/KIPSTD.2004.11D.4.991
  13. G. P. Pisano and R. Verganti, “Which kind of collaboration is right for you?,” Harvard Business Review, Vol. 86, No. 12, pp. 78-86, 2008.
  14. E. H. Hwang, A Study on the Impact of Online Game Community Characteristics and Interactivity on User Satisfaction, Yeungnam University Master's Degree, 2009.
  15. M. Fishbein and I. Ajzen, Understanding Attitude and Predicting Social Behaviour, Prentice-Hall, Englewood Cliffs, NJ, 1980.
  16. I. Ajzen, “The theory of planned behavior,” Organizational Behavior and Human Decision Processes, Vol. 50, No. 2, pp. 179-211, 1991. https://doi.org/10.1016/0749-5978(91)90020-T
  17. M. S. Yeom, “Understanding of showrooming behavior based on the theory of reasoned action,” Journal of Channel and Retailing, Vol. 20, No. 4, pp. 79-103, 2015.
  18. S. Hong, B. Li and B. Kim, “Consumer purchase decision in a mobile shopping mall: An integrative view of trust and theory of planned behavior,” Information Systems Review, Vol. 18, No. 2, pp. 151-171, 2016.
  19. E. J. Yang, “Study on the behavioral intention of Chinese cosmetic surgery tourists applied to the extended theory of reasoned action,” The Journal of Tourism Studies, Vol. 26, No. 2, pp. 127-151, 2014.
  20. L. S. L. Chen, “The impact of perceived risk, intangibility and consumer characteristics on online game playing,” Computers in Human Behavior, Vol. 26, No. 6, pp. 1607-1613, 2010. https://doi.org/10.1016/j.chb.2010.06.008
  21. J. C. C. Lin and H. Lu, “Towards an understanding of the behaviour intention to use a web site,” International Journal of Information Management, Vol. 20, No. 3, pp. 197-208, 2000. https://doi.org/10.1016/S0268-4012(00)00005-0
  22. K. Y. Lee, “Operation strategy in online knowledge sharing community,” The Journal of Society for e-Business Studies, Vol. 14, No. 4, pp. 95-118, 2009.
  23. V. Venkatesh and F. D. Davis, “A theoretical extension of the technology acceptance model: four longitudinal field studies,” Management Science, Vol. 46, No. 2, pp. 186-204, 1997. https://doi.org/10.1287/mnsc.46.2.186.11926
  24. B. Kim and M. Kang, “Effect of MMS Addiction on user's health and academic performance in an era of convergence,” Journal of Digital Convergence, Vol. 14, No. 1, pp. 131-139, 2016. https://doi.org/10.14400/JDC.2016.14.1.131
  25. K. Yang, “Consumer technology traits in determining mobile shopping adoption: An application of the extended theory of planned behavior,” Journal of Retailing and Consumer Services, Vol. 19, No. 5, pp. 484-49, 2012. https://doi.org/10.1016/j.jretconser.2012.06.003
  26. W. S. Jung and S. J. Yoon, “Predicting purchase intent on social commerce: Use of TPB(Theory of Planned Behavior), and TRI(Technology Readiness),” Journal of the Korea Service Management Society, Vol. 14, No. 2, pp. 1-24, 2013.
  27. J. F. Hair, G. T. M. Hult, C. M. Ringle and M. Sarstedt, A Primer on Partial Least Squares Structural Equation Modeling (PLS-SEM), Sage, Thousand Oaks, 2013.
  28. J. F. Hair, W. C. Black, B. J. Babin, and R. E. Anderson, Multivariate Data Analysis, 7th Edition. London: Prentice Hall, 2009.
  29. C. Fornell and D. F. Larcker, “Evaluating structural evaluation models with unobservable variables and measurement error,” Journal of Marketing Research, Vol. 18, No. 1, pp. 39-50, 1981. https://doi.org/10.2307/3151312