DOI QR코드

DOI QR Code

Assessment of Early Dental Caries by Using Optical Coherence Tomography

Optical Coherence Tomography를 이용한 초기 치아우식 검사

  • Min, Ji-Hyun (Department of Dental Hygiene, College of Health Sciences, Cheongju University)
  • 민지현 (청주대학교 보건의료대학 치위생학과)
  • Received : 2016.06.10
  • Accepted : 2016.07.07
  • Published : 2016.08.31

Abstract

The purpose of this study was to assess the correlation between integrated mineral loss (volume % mineral${\times}{\mu}m$, ${\Delta}Z_{TMR}$) determined using transverse microradiography (TMR) and integrated reflectivity ($dB{\times}{\mu}m$, ${\Delta}R_{OCT}$) determined using optical coherence tomography (OCT) for detecting early dental caries with lesion depth more than $200{\mu}m$. Sixty tooth specimens were made from sound bovine teeth. They were immersed in a demineralized solution for 20, 30, and 40 days. The ${\Delta}R_{OCT}$ was obtained from the cross-sectional OCT image. The ${\Delta}Z_{TMR}$ was obtained from the TMR image. The correlation between ${\Delta}R_{OCT}$ and ${\Delta}Z_{TMR}$ was examined using Pearson correlation. The Bland-Altman plot was constructed using the ${\Delta}R_{OCT}$ and ${\Delta}Z_{TMR}$ values. A significant correlation between ${\Delta}R_{OCT}$ and ${\Delta}Z_{TMR}$ was confirmed (r=0.491, p=0.003). Moreover, most of the difference between ${\Delta}R_{OCT}$ and ${\Delta}Z_{TMR}$ was included in the error section of the Bland-Altman plot. Therefore, OCT could be used as a substitute for TMR when analyzing mineral loss in early dental caries.

TMR은 초기우식 평가의 gold standard로 여겨지나 시편을 파괴하여야만 시편의 무기질 밀도를 확인할 수 있는 실험법이다. 그러나 OCT는 비파괴적인 검사법으로 임상에서도 초기우식을 확인하는 데 사용하므로 본 연구에서는 $200{\mu}m$ 이상의 깊은 법랑질 초기우식에서의 OCT와 TMR에서 구한 integrated mineral loss값 간의 상관성을 확인하고자 하였다. $200{\mu}m$ 이상의 깊이를 갖는 인공 초기우식병소를 제작하여 TMR (${\Delta}Z_{TMR}$)과 OCT (${\Delta}R_{OCT}$)에서 구한 integrated mineral loss를 각각 구하여 상관성 분석을 시행하였으며 Bland-Altman plot을 그려 두 값 간의 오차 분석을 시행하였다. ${\Delta}R_{OCT}$${\Delta}Z_{TMR}$ 간에는 유의한 상관성이 확인되었으며(r=0.491, p=0.003), Bland-Altman plot 상에서도 ${\Delta}Z_{TMR}$${\Delta}R_{OCT}$값 간의 차이가 거의 대부분 오차 구간 내에 있는 것이 확인되어 두 측정 방법 간의 오차가 적은 것으로 확인되었다. 따라서 치과임상에서 OCT를 활용하면 초기우식병소의 탐지 및 모니터링 그리고 초기우식병소의 심도 파악이 가능할 것으로 여겨진다.

Keywords

References

  1. Aoba T, Fejerskov O: Dental fluorosis: chemistry and biology. Crit Rev Oral Biol Med 13: 155-170, 2002. https://doi.org/10.1177/154411130201300206
  2. Featherstone JD: The continuum of dental caries--evidence for a dynamic disease process. J Dent Res 83 Spec No C: C39-C42, 2004. https://doi.org/10.1177/154405910408301S08
  3. Usha C, R S: Dental caries-a complete changeover (part I). J Conserv Dent 12: 46-54, 2009. https://doi.org/10.4103/0972-0707.55617
  4. Pannu P, Gambhir R, Sujlana A: Correlation between the salivary Streptococcus mutans levels and dental caries experience in adult population of Chandigarh, India. Eur J Dent 7: 191-195, 2013. https://doi.org/10.4103/1305-7456.110169
  5. Jeong SJ, Apostolska S, Jankulovska M, et al.: Dental caries risk can be predicted by simply measuring the pH and buffering capacity of saliva. J Dent Hyg Sci 6: 159-162, 2006.
  6. Choi YK, Kim KM, Park DY: Risk of food intake between meals and experience of dental caries among young Koreans. J Dent Hyg Sci 11: 361-365, 2011.
  7. Bahrololoomi Z, Ezoddini F, Halvani N: Comparison of radiography, laser fluorescence and visual examination for diagnosing incipient occlusal caries of permanent first molars. J Dent (Tehran) 12: 324-332, 2015.
  8. Olmez A, Tuna D, Oznurhan F: Clinical evaluation of diagnodent in detection of occlusal caries in children. J Clin Pediatr Dent 30: 287-291, 2006.
  9. Tassery H, Levallois B, Terrer E, et al.: Use of new minimum intervention dentistry technologies in caries management. Aust Dent J 58 Suppl 1: 40-59, 2013. https://doi.org/10.1111/adj.12049
  10. Pretty IA: Caries detection and diagnosis: novel technologies. J Dent 34: 727-739, 2006. https://doi.org/10.1016/j.jdent.2006.06.001
  11. Kim HE: Quantitative light-induced fluorescence: a potential tool for dental hygiene process. J Dent Hyg Sci 13: 115-124, 2013.
  12. Min JH, Inaba D, Kwon HK, Chung JH, Kim BI: Evaluation of penetration effect of resin infiltrant using optical coherence tomography. J Dent 43: 720-725, 2015. https://doi.org/10.1016/j.jdent.2015.03.006
  13. Maia AM, de Freitas AZ, de LCS, Gomes AS, Karlsson L: Evaluation of dental enamel caries assessment using quantitative light induced fluorescence and optical coherence tomography. J Biophotonics 9: 596-602, 2016. https://doi.org/10.1002/jbio.201500111
  14. Shimada Y, Sadr A, Sumi Y, Tagami J: Application of optical coherence tomography (OCT) for diagnosis of caries, cracks, and defects of restorations. Curr Oral Health Rep 2: 73-80, 2015. https://doi.org/10.1007/s40496-015-0045-z
  15. Lee RC, Kang H, Darling CL, Fried D: Automated assessment of the remineralization of artificial enamel lesions with polarization-sensitive optical coherence tomography. Biomed Opt Express 5: 2950-2962, 2014. https://doi.org/10.1364/BOE.5.002950
  16. Cara AC, Zezell DM, Ana PA, Maldonado EP, Freitas AZ: Evaluation of two quantitative analysis methods of optical coherence tomography for detection of enamel demineralization and comparison with microhardness. Lasers Surg Med 46: 666-671, 2014. https://doi.org/10.1002/lsm.22292
  17. Lee RC, Darling CL, Fried D: Automated detection of remineralization in simulated enamel lesions with PS-OCT. Proc SPIE Int Soc Opt Eng 8929: 89290E, 2014.
  18. Huang D, Swanson EA, Lin CP, et al.: Optical coherence tomography. Science 254: 1178-1181, 1991. https://doi.org/10.1126/science.1957169
  19. Fercher AF: Optical coherence tomography-development, principles, applications. Z Med Phys 20: 251-276, 2010. https://doi.org/10.1016/j.zemedi.2009.11.002
  20. Chan KH, Chan AC, Fried WA, Simon JC, Darling CL, Fried D: Use of 2D images of depth and integrated reflectivity to represent the severity of demineralization in cross-polarization optical coherence tomography. J Biophotonics 8: 36-45, 2015. https://doi.org/10.1002/jbio.201300137
  21. Amaechi BT, Podoleanu AG, Komarov G, Higham SM, Jackson DA: Quantification of root caries using optical coherence tomography and microradiography: a correlational study. Oral Health Prev Dent 2: 377-382, 2004.
  22. Natsume Y, Nakashima S, Sadr A, Shimada Y, Tagami J, Sumi Y: Estimation of lesion progress in artificial root caries by swept source optical coherence tomography in comparison to transverse microradiography. J Biomed Opt 16: 071408, 2011. https://doi.org/10.1117/1.3600448
  23. Inaba D, Tanaka R, Takagi O, Yonemitsu M, Arends J: Computerized measurements of microradiographic mineral parameters of de- and remineralized dental hard tissues. J Dent Health 47: 67-74, 1997.
  24. Arends J, ten Bosch JJ: Demineralization and remineralization evaluation techniques. J Dent Res 71 Spec No: 924-928, 1992. https://doi.org/10.1177/002203459207100S27
  25. Louie T, Lee C, Hsu D, et al.: Clinical assessment of early tooth demineralization using polarization sensitive optical coherence tomography. Lasers Surg Med 42: 738-745, 2010.
  26. Thomas RZ, Ruben JL, de Vries J, ten Bosch JJ, Huysmans MC: Transversal wavelength-independent microradiography, a method for monitoring caries lesions over time, validated with transversal microradiography. Caries Res 40: 281-291, 2006. https://doi.org/10.1159/000093186
  27. Fujimoto JG: Optical coherence tomography for ultrahigh resolution in vivo imaging. Nat Biotechnol 21: 1361-1367, 2003. https://doi.org/10.1038/nbt892
  28. Jones RS, Darling CL, Featherstone JD, Fried D: Imaging artificial caries on the occlusal surfaces with polarization-sensitive optical coherence tomography. Caries Res 40: 81-89, 2006. https://doi.org/10.1159/000091052