DOI QR코드

DOI QR Code

The Development of the Predict Model for Solar Power Generation based on Current Temperature Data in Restricted Circumstances

제한적인 환경에서 현재 기온 데이터에 기반한 태양광 발전 예측 모델 개발

  • Lee, Hyunjin (Dept. of Computer Science & Software, Korea Soongsil Cyber University)
  • Received : 2016.05.23
  • Accepted : 2016.06.29
  • Published : 2016.06.30

Abstract

Solar power generation influenced by the weather. Using the weather forecast information, it is possible to predict the short-term solar power generation in the future. However, in limited circumstances such as islands or mountains, it can not be use weather forecast information by the disconnection of the network, it is impossible to use solar power generation prediction model using weather forecast. Therefore, in this paper, we propose a system that can predict the short-term solar power generation by using the information that can be collected by the system itself. We developed a short-term prediction model using the prior information of temperature and power generation amount to improve the accuracy of the prediction. We showed the usefulness of proposed prediction model by applying to actual solar power generation data.

태양광 발전량은 날씨에 큰 영향을 받는다. 기상 예보를 사용할 수 있는 환경이라면, 기상 예보 정보를 사용하여 미래의 태양광 발전량을 단기예측 할 수 있다. 하지만, 섬이나 산과 같이 네트워크의 단절에 의해 기상예보 정보를 사용할 수 없는 제한된 환경에서는 기상예보를 사용한 태양광 발전량 예측 모델을 사용할 수 없다. 따라서 본 논문에서는 시스템 자체적으로 수집할 수 있는 정보만을 이용하여 태양광 발전량을 단기 예측할 수 있는 시스템을 제안하였다. 예측의 정확도를 높이기 위하여 이전 온도정보와 발전량 정보를 이용하여 단기 예측모델을 생성하였다. 실험을 통하여 실데이터에 제안한 예측 모델을 적용하여 유용한 결과를 보였다.

Keywords

References

  1. M. Detynicki, C. Marsala, A. Krishman, and M. Siegel, "Weather-based solar energy prediction," WCCI 2012 IEEE world cong. on computational intelligence, pp. 1-7, June, 2012.
  2. A. Prastawa, and R. Dalimi, "New Approach on Renewable Energy Solar Power Prediction in indonesia based on Artificial Neural Network technique: Southern region of Sulawesi island study case," 2013 International Conference on Quality in Research, pp. 166-169, 2013.6.
  3. W. C. Cha, J. H. Park, U. R. Cho, J. C. Kim, "Design of Generation Efficiency Fuzzy Prediction Model using Solar Power Element Data," The Transactions of the Korean Institute of Electrical Engineers Vol. 63, No. 10, pp. 1423-1427, 2014. https://doi.org/10.5370/KIEE.2014.63.10.1423
  4. K. D. Kim, "The Development of the Short-Term Predict Model for Solar Power Generation," Journal of the Korean Solar Energy Society, Vol.33, No.6, 2013.
  5. Rokach, L. ,"Ensemble-based classifiers", Artificial Intelligence Review, Vol. 33, pp. 1-39, 2010. https://doi.org/10.1007/s10462-009-9124-7
  6. Christian Igel and Michael Husken, "Empirical Evaluation of the Improved Rprop Learning Algorithm", Neurocomputing, Vol. 50, pp. 105-123, 2003. https://doi.org/10.1016/S0925-2312(01)00700-7
  7. Avriel, and Mordecai, "Nonlinear Programming: Analysis and Methods", Dover Publishing, 2003.
  8. Durbin J. and Koupman, S.J. "Time Series Analysis by Static Space Methods", Oxford University Press, 2001.
  9. Gareth James, Daniela Witten, Trevor Hastie and Robert Tibshirani, "An Introduction to Statistical Learning with Applications on R", Springer, 2013.
  10. C. B. Kim "Forecasting the Seaborne Trade Volume using Intervention Multiplicative Seasonal ARIMA and Artificial Neural Network Model",Journal of Korea Port Economic Association, Vol.31, No.1, pp.69-84, 2015.
  11. M. S. Kim, K. W. Kim, S. S. Park, "A Study on the Air Travel Demand Forecasting using time series ARIMA-Intervention Model," Journal of the Korean Society for Aviation and Aeronautics, Vol. 20, No.1, pp.63-74, 2012.
  12. https://www.californiasolarstatistics.ca.gov/data_downloads/
  13. http://www.friendlyforecast.com/
  14. David S. Moore, William I. Notz, and Michael A. Fligner, "The Basic Practice of Statistics", W. H. Freeman, 2015.

Cited by

  1. A Study on Standard Ocean Lighted Buoy Type System for Real-time Ocean Meteorological Observation vol.19, pp.9, 2018, https://doi.org/10.9728/dcs.2018.19.9.1739
  2. 칼만 필터 기반의 스마트 해양기상관측 파고 시스템 연구 vol.18, pp.7, 2016, https://doi.org/10.9728/dcs.2017.18.7.1377
  3. 미세먼지와 기상정보 기반의 AHP 분석을 통하여 태양광 발전소 최적입지선정에 대한 사례연구 vol.19, pp.4, 2016, https://doi.org/10.12812/ksms.2017.19.4.157