References
- Jenkins DJ, Taylor RH, Goff DV, Fielden H, Misiewicz JJ, Sarson DL, Bloom SR, Alberti KG. Scope and specificity of acarbose in slowing carbohydrate absorption in man. Diabetes 30: 951-954 (1981) https://doi.org/10.2337/diab.30.11.951
- Rachmani R, Bar-Dayan Y, Ronen Z, Levi Z, Slavachevsky I, Ravid M. The effect of acarbose on insulin resistance in obese hypertensive subjects with normal glucose tolerance: a randomized controlled study. Diabetes Obes. Metab. 6: 63-68 (2004) https://doi.org/10.1111/j.1463-1326.2004.00317.x
-
Tarling CA, Woods K, Zhang R, Brastianos HC, Brayer GD, Andersen RJ, Withers SG. The search for novel human pancreatic
${\alpha}$ -amylase inhibitors: High-throughput screening of terrestrial and marine natural product extracts. Chembiochem 9: 433-438 (2008) https://doi.org/10.1002/cbic.200700470 -
Lee BH, Yan L, Phillips RJ, Reuhs BL, Jones K, Rose DR, Nichols BL, Quezada-Calvillo R, Yoo SH, Hamaker BR. Enzyme-synthesized highly branched maltodextrins have slow glucose generation at the mucosal
${\alpha}$ -glucosidase level and are slowly digestible in vivo. PLoS One 8: e59745 (2013) https://doi.org/10.1371/journal.pone.0059745 -
Maurus R, Begum A, Kuo HH, Racaza A, Numao S, Andersen C, Tams JW, Vind J, Overall CM, Withers SG, Brayer GD. Structural and mechanistic studies of chloride induced activation of human pancreatic
${\alpha}$ -amylase. Protein Sci. 14: 743-755 (2005) https://doi.org/10.1110/ps.041079305 -
Rydberg EH, Li C, Maurus R, Overall CM, Brayer GD, Withers SG. Mechanistic analyses of catalysis in human pancreatic
${\alpha}$ -amylase: Detailed kinetic and structural studies of mutants of three conserved carboxylic acids. Biochemistry 41: 4492-4502 (2002) https://doi.org/10.1021/bi011821z -
Numao S, Maurus R, Sidhu G, Wang Y, Overall CM, Brayer GD, Withers SG. Probing the role of the chloride ion in the mechanism of human pancreatic
${\alpha}$ -amylase. Biochemistry 41: 215-225 (2002) https://doi.org/10.1021/bi0115636 -
Maurus R, Begum A, Williams LK, Fredriksen JR, Zhang R, Withers SG, Brayer GD. Alternative catalytic anions differentially modulate human
${\alpha}$ -amylase activity and specificity. Biochemistry 47: 3332-3344 (2008) https://doi.org/10.1021/bi701652t - Zechel DL, Withers SG. Dissection of nucleophilic and acid-base catalysis in glycosidases. Curr. Opin. Chem. Biol. 5: 643-649 (2001) https://doi.org/10.1016/S1367-5931(01)00260-5
- Vocadlo DJ, Davies GJ, Laine R, Withers SG. Catalysis by hen egg-white lysozyme proceeds via a covalent intermediate. Nature 412: 835-838 (2001) https://doi.org/10.1038/35090602
-
Aghajari N, Feller G, Gerday C, Haser R. Structural basis of
${\alpha}$ -amylase activation by chloride. Protein Sci. 11: 1435-1441 (2002) https://doi.org/10.1110/ps.0202602 -
D'Amico S, Gerday C, Feller G. Structural similarities and evolutionary relationships in chloride-dependent
${\alpha}$ -amylases. Gene 253: 95-105 (2000) https://doi.org/10.1016/S0378-1119(00)00229-8 -
Cipolla A, Delbrassine F, Da Lage JL, Feller G. Temperature adaptations in psychrophilic, mesophilic and thermophilic chloride-dependent
${\alpha}$ -amylases. Biochimie 94: 1943-1950 (2012) https://doi.org/10.1016/j.biochi.2012.05.013 -
Nishide T, Nakamura Y, Emi M, Yamamoto T, Ogawa M, Mori T, Matsubara K. Primary structure of human salivary
${\alpha}$ -amylase gene. Gene 41: 299-304 (1986) https://doi.org/10.1016/0378-1119(86)90110-1 -
Horii A, Emi M, Tomita N, Nishide T, Ogawa M, Mori T, Matsubara K. Primary structure of human pancreatic
${\alpha}$ -amylase gene; Its comparison with human salivary${\alpha}$ -amylase gene. Gene 60: 57-64 (1987) https://doi.org/10.1016/0378-1119(87)90213-7 -
Tomita N, Horii A, Doi S, Yokouchi H, Shiosaki K, Higashiyama M, Matsuura N, Ogawa M, Mori T, Matsubara K. A novel type of human
${\alpha}$ -amylase produced in lung carcinoid tumor. Gene 76: 11-18 (1989) https://doi.org/10.1016/0378-1119(89)90003-6 -
Ferey-Roux G, Perrier J, Forest E, Marchis-Mouren G, Puigserver A, Santimone M. The human pancreatic
${\alpha}$ -amylase isoforms: isolation, structural studies and kinetics of inhibition by acarbose. Biochim. Biophys. Acta 1388: 10-20 (1998) https://doi.org/10.1016/S0167-4838(98)00147-2 -
Shiosaki K, Takata K, Omichi K, Tomita N, Horii A, Ogawa M, Matsubara K. Identification of a novel
${\alpha}$ -amylase by expression of a newly cloned human amy3 cDNA in yeast. Gene 89: 253-258 (1990) https://doi.org/10.1016/0378-1119(90)90013-H - Lin-Cereghino J, Wong WW, Xiong S, Giang W, Luong LT, Vu J, Johnson SD, Lin-Cereghino GP. Condensed protocol for competent cell preparation and transformation of the methylotrophic yeast Pichia pastoris. Biotechniques 38: 44-48 (2005) https://doi.org/10.2144/05381BM04
- Lee JI, Kim YW. Characterization of amine oxidases from Arthrobacter aurescens and application for determination of biogenic amines. World J. Microbiol. Biotechnol. 29: 673-682 (2013) https://doi.org/10.1007/s11274-012-1223-y
- Fox JD, Robyt JF. Miniaturization of three carbohydrate analyses using a microsample plate reader. Anal. Biochem. 195: 93-96 (1991) https://doi.org/10.1016/0003-2697(91)90300-I
- Haldane JBS. Enzymes. Longmans, Green and Co., London, England (1930)
-
Feller G, Bussy O, Houssier C, Gerday C. Structural and functional aspects of chloride binding to Alteromonas haloplanctis
${\alpha}$ -amylase. J. Biol. Chem. 271: 23836-23841 (1996) https://doi.org/10.1074/jbc.271.39.23836 -
Declerck N, Machius M, Wiegand G, Huber R, Gaillardin C. Probing structural determinants specifying high thermostability in Bacillus licheniformis
${\alpha}$ -amylase. J. Mol. Biol. 301: 1041-1057 (2000) https://doi.org/10.1006/jmbi.2000.4025 -
Machius M, Declerck N, Huber R, Wiegand G. Activation of Bacillus licheniformis
${\alpha}$ -amylase through a disorder${\rightarrow}$ order transition of the substrate-binding site mediated by a calcium-sodiumcalcium metal triad. Structure 6: 281-292 (1998) https://doi.org/10.1016/S0969-2126(98)00032-X -
Brayer GD, Luo Y, Withers SG. The structure of human pancreatic
${\alpha}$ -amylase at 1.8 A resolution and comparisons with related enzymes. Protein Sci. 4: 1730-1742 (1995) https://doi.org/10.1002/pro.5560040908 - Reed MC, Lieb A, Nijhout HF. The biological significance of substrate inhibition: A mechanism with diverse functions. Bioessays 32: 422-429 (2010) https://doi.org/10.1002/bies.200900167