DOI QR코드

DOI QR Code

Effect of chloride ions on the catalytic properties of human pancreatic α-amylase isozyme produced in Pichia pastoris

Pichia pastoris에서 생산된 인체 췌장 α-아밀레이스 동질효소의 촉매활성에 대한 염소이온의 영향

  • Kim, Min-Gyu (Department of Food and Biotechnology, Korea University) ;
  • Kim, Young-Wan (Department of Food and Biotechnology, Korea University)
  • 김민규 (고려대학교 식품생명공학과) ;
  • 김영완 (고려대학교 식품생명공학과)
  • Received : 2016.06.01
  • Accepted : 2016.06.27
  • Published : 2016.08.31

Abstract

The AMY2B gene, encoding human pancreatic ${\alpha}$-amylase isozyme (HPA II), was expressed in Pichia pastoris, and the effects of chloride ions on HPA II activity toward starch substrates were investigated. As seen with chloride ion-dependent ${\alpha}$-amylases-including HPA I, the isozyme of HPA II-chloride ions increased enzyme activity and shifted the optimal pH to an alkaline pH. The activity enhancement by chloride was more significant at pH 8 than that at pH 6, suggesting that the protonation state of the general acid/base catalyst of HPA II was important for the hydrolysis of starches at an alkaline pH because of the increase in its $pK_a$ by chloride ions. The turnover values for cereal starches as the substrates markedly increased in the presence of chloride by up to 7.2-fold, whereas that for soluble starch increased by only 1.7-fold. Chloride inhibited substrate hydrolysis at high substrate concentrations, with $K_i$ values ranging from 6 to 15 mg/mL.

HPA는 식품으로 섭취되는 녹말을 분해하는데 있어서 매우 중요한 역할을 수행하는 효소이기 때문에 HPA 효소 활성의 억제는 당뇨와 비만과 같은 질환의 예방과 치료에 있어서 의미를 가진다. 따라서 HPA는 당뇨병 치료와 비만 예방을 위한 새로운 식 의약품 소재 개발을 위한 주요 타깃 효소 중 하나이며, 새로운 소재의 개발을 위해서는 HPA의 반응 메커니즘을 비롯하여 천연 기질 분해 특성에 대한 이해가 반드시 필요하다. 본 연구에서는 HPA의 동질효소 중 연구가 거의 진행되지 않은 HPA II에 대한 효소 특성화를 진행하고자 P. pastoris 시스템을 이용하여 재조합 HPA II를 생산하였으며, 녹말 분해와 관련된 효소적 특성을 분석하였다. HPA II는 10 mM NaCl까지 농도 의존적으로 효소활성이 증가하였으며, 최적 활성을 위한 pH는 0 mM NaCl 조건에서 pH 6.5이었으나 10 mM NaCl조건에서 pH 7.5로 이동하는 특성을 보였으며, 이는 HPA I을 포함하는 염소이온 의존형 아밀레이스가 나타내는 전형적인 특징이다. 염소이온 존재 시 최적 pH가 염기성 pH 영역으로 이동하는 것은 염소 이온과 효소의 결합에 의해 HPA II의 산/염기 촉매 잔기의 $pK_a$값이 커진다는 것을 의미하며, 염소이온을 첨가하였을 때 녹말에 대한 가수분해 활성의 증대 정도가 산성 pH 영역보다 염기성 pH 영역에서 두드러지게 나타났다는 점이 이를 뒷받침하였다. 반응속도론적 분석 결과에 따르면 염소이온 존재 시 효소활성의 증대는 대부분 전환수(turnover number)의 증대에 의한 것으로 나타났으며, 가용성 녹말 보다 곡류 녹말에 대한 전환수의 증대가 크게 나타났다. 염소이온은 활성의 증대뿐만 아니라 고농도의 기질 조건에서 기질에 의한 효소 활성 억제 양상을 심화시키는 것으로 나타났다. 결론적으로 HPA II의 특징은 HPA I과 거의 유사한 경향을 나타내었으며, 염소이온 첨가여부에 따른 HPA II의 가수분해활성 결과를 바탕으로 향 후 HPA에 대한 곡류 녹말 가수분해 활성 억제제 개발을 위한 연구를 추진할 계획이다.

Keywords

References

  1. Jenkins DJ, Taylor RH, Goff DV, Fielden H, Misiewicz JJ, Sarson DL, Bloom SR, Alberti KG. Scope and specificity of acarbose in slowing carbohydrate absorption in man. Diabetes 30: 951-954 (1981) https://doi.org/10.2337/diab.30.11.951
  2. Rachmani R, Bar-Dayan Y, Ronen Z, Levi Z, Slavachevsky I, Ravid M. The effect of acarbose on insulin resistance in obese hypertensive subjects with normal glucose tolerance: a randomized controlled study. Diabetes Obes. Metab. 6: 63-68 (2004) https://doi.org/10.1111/j.1463-1326.2004.00317.x
  3. Tarling CA, Woods K, Zhang R, Brastianos HC, Brayer GD, Andersen RJ, Withers SG. The search for novel human pancreatic ${\alpha}$-amylase inhibitors: High-throughput screening of terrestrial and marine natural product extracts. Chembiochem 9: 433-438 (2008) https://doi.org/10.1002/cbic.200700470
  4. Lee BH, Yan L, Phillips RJ, Reuhs BL, Jones K, Rose DR, Nichols BL, Quezada-Calvillo R, Yoo SH, Hamaker BR. Enzyme-synthesized highly branched maltodextrins have slow glucose generation at the mucosal ${\alpha}$-glucosidase level and are slowly digestible in vivo. PLoS One 8: e59745 (2013) https://doi.org/10.1371/journal.pone.0059745
  5. Maurus R, Begum A, Kuo HH, Racaza A, Numao S, Andersen C, Tams JW, Vind J, Overall CM, Withers SG, Brayer GD. Structural and mechanistic studies of chloride induced activation of human pancreatic ${\alpha}$-amylase. Protein Sci. 14: 743-755 (2005) https://doi.org/10.1110/ps.041079305
  6. Rydberg EH, Li C, Maurus R, Overall CM, Brayer GD, Withers SG. Mechanistic analyses of catalysis in human pancreatic ${\alpha}$-amylase: Detailed kinetic and structural studies of mutants of three conserved carboxylic acids. Biochemistry 41: 4492-4502 (2002) https://doi.org/10.1021/bi011821z
  7. Numao S, Maurus R, Sidhu G, Wang Y, Overall CM, Brayer GD, Withers SG. Probing the role of the chloride ion in the mechanism of human pancreatic ${\alpha}$-amylase. Biochemistry 41: 215-225 (2002) https://doi.org/10.1021/bi0115636
  8. Maurus R, Begum A, Williams LK, Fredriksen JR, Zhang R, Withers SG, Brayer GD. Alternative catalytic anions differentially modulate human ${\alpha}$-amylase activity and specificity. Biochemistry 47: 3332-3344 (2008) https://doi.org/10.1021/bi701652t
  9. Zechel DL, Withers SG. Dissection of nucleophilic and acid-base catalysis in glycosidases. Curr. Opin. Chem. Biol. 5: 643-649 (2001) https://doi.org/10.1016/S1367-5931(01)00260-5
  10. Vocadlo DJ, Davies GJ, Laine R, Withers SG. Catalysis by hen egg-white lysozyme proceeds via a covalent intermediate. Nature 412: 835-838 (2001) https://doi.org/10.1038/35090602
  11. Aghajari N, Feller G, Gerday C, Haser R. Structural basis of ${\alpha}$-amylase activation by chloride. Protein Sci. 11: 1435-1441 (2002) https://doi.org/10.1110/ps.0202602
  12. D'Amico S, Gerday C, Feller G. Structural similarities and evolutionary relationships in chloride-dependent ${\alpha}$-amylases. Gene 253: 95-105 (2000) https://doi.org/10.1016/S0378-1119(00)00229-8
  13. Cipolla A, Delbrassine F, Da Lage JL, Feller G. Temperature adaptations in psychrophilic, mesophilic and thermophilic chloride-dependent ${\alpha}$-amylases. Biochimie 94: 1943-1950 (2012) https://doi.org/10.1016/j.biochi.2012.05.013
  14. Nishide T, Nakamura Y, Emi M, Yamamoto T, Ogawa M, Mori T, Matsubara K. Primary structure of human salivary ${\alpha}$-amylase gene. Gene 41: 299-304 (1986) https://doi.org/10.1016/0378-1119(86)90110-1
  15. Horii A, Emi M, Tomita N, Nishide T, Ogawa M, Mori T, Matsubara K. Primary structure of human pancreatic ${\alpha}$-amylase gene; Its comparison with human salivary ${\alpha}$-amylase gene. Gene 60: 57-64 (1987) https://doi.org/10.1016/0378-1119(87)90213-7
  16. Tomita N, Horii A, Doi S, Yokouchi H, Shiosaki K, Higashiyama M, Matsuura N, Ogawa M, Mori T, Matsubara K. A novel type of human ${\alpha}$-amylase produced in lung carcinoid tumor. Gene 76: 11-18 (1989) https://doi.org/10.1016/0378-1119(89)90003-6
  17. Ferey-Roux G, Perrier J, Forest E, Marchis-Mouren G, Puigserver A, Santimone M. The human pancreatic ${\alpha}$-amylase isoforms: isolation, structural studies and kinetics of inhibition by acarbose. Biochim. Biophys. Acta 1388: 10-20 (1998) https://doi.org/10.1016/S0167-4838(98)00147-2
  18. Shiosaki K, Takata K, Omichi K, Tomita N, Horii A, Ogawa M, Matsubara K. Identification of a novel ${\alpha}$-amylase by expression of a newly cloned human amy3 cDNA in yeast. Gene 89: 253-258 (1990) https://doi.org/10.1016/0378-1119(90)90013-H
  19. Lin-Cereghino J, Wong WW, Xiong S, Giang W, Luong LT, Vu J, Johnson SD, Lin-Cereghino GP. Condensed protocol for competent cell preparation and transformation of the methylotrophic yeast Pichia pastoris. Biotechniques 38: 44-48 (2005) https://doi.org/10.2144/05381BM04
  20. Lee JI, Kim YW. Characterization of amine oxidases from Arthrobacter aurescens and application for determination of biogenic amines. World J. Microbiol. Biotechnol. 29: 673-682 (2013) https://doi.org/10.1007/s11274-012-1223-y
  21. Fox JD, Robyt JF. Miniaturization of three carbohydrate analyses using a microsample plate reader. Anal. Biochem. 195: 93-96 (1991) https://doi.org/10.1016/0003-2697(91)90300-I
  22. Haldane JBS. Enzymes. Longmans, Green and Co., London, England (1930)
  23. Feller G, Bussy O, Houssier C, Gerday C. Structural and functional aspects of chloride binding to Alteromonas haloplanctis ${\alpha}$-amylase. J. Biol. Chem. 271: 23836-23841 (1996) https://doi.org/10.1074/jbc.271.39.23836
  24. Declerck N, Machius M, Wiegand G, Huber R, Gaillardin C. Probing structural determinants specifying high thermostability in Bacillus licheniformis ${\alpha}$-amylase. J. Mol. Biol. 301: 1041-1057 (2000) https://doi.org/10.1006/jmbi.2000.4025
  25. Machius M, Declerck N, Huber R, Wiegand G. Activation of Bacillus licheniformis ${\alpha}$-amylase through a disorder${\rightarrow}$order transition of the substrate-binding site mediated by a calcium-sodiumcalcium metal triad. Structure 6: 281-292 (1998) https://doi.org/10.1016/S0969-2126(98)00032-X
  26. Brayer GD, Luo Y, Withers SG. The structure of human pancreatic ${\alpha}$-amylase at 1.8 A resolution and comparisons with related enzymes. Protein Sci. 4: 1730-1742 (1995) https://doi.org/10.1002/pro.5560040908
  27. Reed MC, Lieb A, Nijhout HF. The biological significance of substrate inhibition: A mechanism with diverse functions. Bioessays 32: 422-429 (2010) https://doi.org/10.1002/bies.200900167