DOI QR코드

DOI QR Code

Displacement and force control of complex element structures by Matrix Condensation

  • Saeed, Najmadeen M. (Civil Engineering Department, University of Raparin) ;
  • Kwan, Alan S.K. (Cardiff School of Engineering, Cardiff University)
  • Received : 2016.02.07
  • Accepted : 2016.04.15
  • Published : 2016.09.25

Abstract

A direct and relatively simple method for controlling nodal displacements and/or internal bar forces has been developed for prestressable structural assemblies including complex elements ("macro-elements", e.g., the pantographic element), involving Matrix Condensation, in which structural matrices being built up from matrices of elementary elements. The method is aimed at static shape control of geometrically sensitive structures. The paper discusses identification of the most effective bars for actuation, without incurring violation in bar forces, and also with objective of minimal number of actuators or minimum actuation. The advantages of the method is that the changes for both force and displacement regimes are within a single formulation. The method can also be used for adjustment of bar forces to either reduce instances of high forces or increase low forces (e.g., in a cable nearing slack).

Keywords

References

  1. Burdisso, R.A. and Haftka, R.T. (1990), "Statistical analysis of static shape control in space structures", AIAA J., 28(8), 1504-1508. https://doi.org/10.2514/3.25245
  2. Du, J., Bao, H. and Cui, C. (2014), "Shape adjustment of cable mesh reflector antennas considering modeling uncertainties", Acta Astronautica, 97, 164-171. https://doi.org/10.1016/j.actaastro.2014.01.001
  3. Du, J., Zong, Y. and Bao, H. (2013), "Shape adjustment of cable mesh antennas using sequential quadratic programming", Aerosp. Sci. Tech., 30(1), 26-32. https://doi.org/10.1016/j.ast.2013.06.002
  4. Edberg, D.L. (1987), "Control of flexible structures by applied thermal gradients", AIAA J., 25(6), 877-883. https://doi.org/10.2514/3.9715
  5. Hadjigeorgiou, E.P., Stavroulakis, G.E. and Massalas, C.V. (2006), "Shape control and damage identification of beams using piezoelectric actuation and genetic optimization", Int. J. Eng. Sci., 44(7), 409-421. https://doi.org/10.1016/j.ijengsci.2006.02.004
  6. Haftka, R.T. and Adelman, H.M. (1985a), "An analytical investigation of shape control of large space structures by applied temperatures", AIAA J., 23(3), 450-457. https://doi.org/10.2514/3.8934
  7. Haftka, R.T. and Adelman, H.M. (1985b), "Selection of actuator locations for static shape control of large space structures by heuristic integer programing", Comput. Struct., 20(1), 575-582. https://doi.org/10.1016/0045-7949(85)90105-1
  8. Irschik, H. (2002), "A review on static and dynamic shape control of structures by piezoelectric actuation", Eng. Struct., 24(1), 5-11. https://doi.org/10.1016/S0141-0296(01)00081-5
  9. Kawaguchi, K.I., Hangai, Y., Pellegrino, S. and Furuya, H. (1996), "Shape and stress control analysis of prestressed truss structures", J. Reinf. Plast. Compos., 15(12), 1226-1236. https://doi.org/10.1177/073168449601501204
  10. Korkmaz, S. (2011), "A review of active structural control: challenges for engineering informatics", Comput. Struct., 89(23), 2113-2132. https://doi.org/10.1016/j.compstruc.2011.07.010
  11. Kwan, A.S.K. (1991), "A pantographic deployable mast", PhD Thesis, University of Cambridge, Cambridge, UK.
  12. Kwan, A.S.K. and Pellegrino, S. (1993), "Prestressing a space structure", AIAA J., 31(10), 1961-1963. https://doi.org/10.2514/3.11876
  13. Kwan, A.S.K. and Pellegrino, S. (1994), "Matrix formulation of macro-elements for deployable structures", Comput. Struct., 50(2), 237-254. https://doi.org/10.1016/0045-7949(94)90299-2
  14. Mitsugi, J., Yasaka, T. and Miura, K. (1990), "Shape control of the tension truss antenna", AIAA J., 28(2), 316-322. https://doi.org/10.2514/3.10391
  15. Pellegrino, S. (1993), "Structural computations with the singular value decomposition of the equilibrium matrix", Int. J. Solid. Struct., 30(21), 3025-3035. https://doi.org/10.1016/0020-7683(93)90210-X
  16. Pellegrino, S., Kwan, A.S.K. and Van Heerden, T.F. (1992), "Reduction of equilibrium, compatibility and flexibility matrices, in the force method", Int. J. Numer. Meth. Eng., 35(6),1219-1236. https://doi.org/10.1002/nme.1620350605
  17. Saeed, N.M. (2014), "Prestress and deformation control in flexible structures", PhD Thesis, Cardiff University, Cardiff, UK.
  18. Salama, M., Umland, J., Bruno, R. and Garba, J. (1993), "Shape adjustment of precision truss structures: analytical and experimental validation", Smart Mater. Struct., 2(4), 240. https://doi.org/10.1088/0964-1726/2/4/005
  19. Shea, K., Fest, E. and Smith, I.F.C. (2002), "Developing intelligent tensegrity structures with stochastic search", Adv. Eng. Inform., 16(1), 21-40. https://doi.org/10.1016/S1474-0346(02)00003-4
  20. Shen, L.Y., Li, G.Q. and Luo, Y.F. (2006), "Displacement control of prestressed cable structures", J. Tongji Univ. Nat. Sci., 34(3), 291-295. (in Chinese)
  21. Subramanian, G. and Mohan, P. (1996), "A fast algorithm for the static shape control of flexible structures", Comput. Struct., 59(3), 485-488. https://doi.org/10.1016/0045-7949(96)00266-0
  22. Sunar, M. and Rao, S.S. (1999), "Recent advances in sensing and control of flexible structures via piezoelectric materials technology", Appl. Mech. Rev., 52(1), 1-16. https://doi.org/10.1115/1.3098923
  23. Tanaka, H. (2011), "Surface error estimation and correction of a space antenna based on antenna gainanalyses", Acta Astronautica, 68(7), 1062-1069. https://doi.org/10.1016/j.actaastro.2010.09.025
  24. Tanaka, H. and Natori, M. (2006), "Shape control of cable-network structures based on concept of selfequilibrated stresses", JSME Int. J. Ser. C, 49, 1067-1072. https://doi.org/10.1299/jsmec.49.1067
  25. Tanaka, H. and Natori, M.C. (2004), "Shape control of space antennas consisting of cable networks", Acta Astronautica, 55(3), 519-527. https://doi.org/10.1016/j.actaastro.2004.05.014
  26. Trak, A.B. and Melosh, R.J. (1992), "Passive shape control of space antennas with truss support structures", Comput. Struct., 45(2), 297-305. https://doi.org/10.1016/0045-7949(92)90413-T
  27. Wang, Z., Chen, S.H. and Han, W. (1997), "The static shape control for intelligent structures", Finite Elem. Anal. Des., 26(4), 303-314. https://doi.org/10.1016/S0168-874X(97)00086-3
  28. Wang, Z., Li, T. and Cao, Y. (2013), "Active shape adjustment of cable net structures with PZT actuators", Aerosp. Sci. Tech., 26(1), 160-168. https://doi.org/10.1016/j.ast.2012.03.001
  29. Xu, X. and Luo, Y.Z. (2008), "Multi-objective shape control of prestressed structures with genetic algorithms", Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering, 222(8), 1139-1147. https://doi.org/10.1243/09544100JAERO394
  30. Yang, S. and Ngoi, B. (2000), "Shape control of beams by piezoelectric actuators", AIAA J., 38(12), 2292-2298. https://doi.org/10.2514/2.898
  31. You, Z. (1997), "Displacement control of prestressed structures", Comput. Meth. Appl. Mech. Eng., 144(1), 51-59. https://doi.org/10.1016/S0045-7825(96)01164-4
  32. Yu, Y., Zhang, X.N. and Xie, S.L. (2009), "Optimal shape control of a beam using piezoelectric actuators with low control voltage", Smart Mater. Struct., 18(9), 095006. https://doi.org/10.1088/0964-1726/18/9/095006
  33. Ziegler, F. (2005), "Computational aspects of structural shape control", Comput. Struct., 83(15), 1191-1204. https://doi.org/10.1016/j.compstruc.2004.08.026

Cited by

  1. Displacement and internal force control in cable-stayed bridges vol.171, pp.1, 2018, https://doi.org/10.1680/jbren.16.00010
  2. 개폐식 막 장력을 고려한 스포크-휠 케이블 구조의 설계 형상 조절 기법 vol.19, pp.1, 2016, https://doi.org/10.9712/kass.2019.19.1.109
  3. Shape and force control of cable structures with minimal actuators and actuation vol.36, pp.3, 2016, https://doi.org/10.1177/09560599211045851