Acknowledgement
Supported by : Dongguk University
References
- L. C. Andrews, Special Functions for Engineers and Applied Mathematicians, Macmillan Company, New York, 1985.
- P. Agarwal, Further results on fractional calculus of Saigo operators, Appl. Appl. Math. 7 (2012), no. 2, 585-594.
-
P. Agarwal, Generalized fractional integration of the
$\overline{H}$ -function, Matematiche (Catania) 67 (2012), no. 2, 107-118. - P. Agarwal, Fractional integration of the product of two multivariables H-function and a general class of polynomials, in: Advances in Applied Mathematics 161 and Approximate Theory, 41, 359-374, Springer Proceedings in Mathematics and Statistics 162, 2013.
- P. Agarwal, J. Choi, and R. B. Paris, Extended Riemann-Liouville fractional derivative operator and its applications, J. Nonlinear Sci. Appl. 8 (2015), no. 5, 451-466. https://doi.org/10.22436/jnsa.008.05.01
- P. Agarwal and S. Jain, Further results on fractional calculus of Srivastava polynomials, Bull. Math. Anal. Appl. 3 (2011), no. 2, 167-174.
- P. Agarwal, S. Jain, M. Chand, S. K. Dwivedi, and S. Kumar, Bessel functions associated with Saigo-Maeda fractional derivateive operators, J. Fract. Calc. Appl. 5 (2014), no. 2, 9606.
- F. AI-Musallam and S. L. Kalla, Asymptotic expansions for generalized gamma and incomplete gamma functions, Appl. Anal. 66 (1997), no. 1-2, 173-187. https://doi.org/10.1080/00036819708840580
- F. AI-Musallam and S. L. Kalla, Further results on a generalized gamma function occurring in diffraction theory, Integral Transforms Spec. Funct. 7 (1998), no. 3-4, 175-190. https://doi.org/10.1080/10652469808819198
- P. Appell and J. Kampe de Feriet, Fonctions Hypergeometriques et Hyperspheriques; Polynomes d'Hermite, Gauthier-Villars, Paris, 1926.
- M. Caputo, Elasticitae dissipazione Zanichelli, Bologna, 1969.
- M. A. Chaudhry, A. Qadir, M. Rafique, and S. M. Zubair, Extension of Euler's beta function, J. Comput. Appl. Math. 78 (1997), no. 1, 19-32. https://doi.org/10.1016/S0377-0427(96)00102-1
- M. A. Chaudhry, A. Qadir, H. M. Srivastava, and R. B. Paris, Extended hypergeometric and confluent hypergeometric functions, Appl. Math. Comput. 159 (2004), no. 2, 589-602.
- M. A. Chaudhry and S. M. Zubair, On a Class of Incomplete Gamma Functions with Applications, Chapman and Hall, (CRC Press), Boca Raton, London, New York, and Washington, D.C., 2001.
- J. Choi and P. Agarwal, Certain class of generating functions for the incomplete hyper-geometric functions, Abstr. Appl. Anal. 2014 (2014), Article ID 714560, 5 papes.
- J. Choi and P. Agarwal, A note on fractional integral operator associated with multiindex Mittag-Leffler functions, FILOMAT (2015), accepted for publication.
- J. Choi and D. Kumar, Certain unified fractional integrals and derivatives for a product of Aleph function and a general class of multivariable polynomials, J. Inequal. Appl. 2014 (2014), Article ID: 499, 15 papes.
- R. Hilfer (ed.), Applications of Fractional Calculus in Physics, World Scientific Publishing Co., Singapore , New York, 2000.
- S. L. Kalla and R. K. Saxena, Integral operators involving hypergeometric functions, Math. Z. 108 (1969), 231-234. https://doi.org/10.1007/BF01112023
- A. A. Kilbas and M. Saigo, Fractional calculus of the H-function, Fukuoka Univ. Sci. Rep. 28 (1998), no. 2, 41-51.
- A. A. Kilbas, H. M. Srivastava, and J. J. Trujillo, Theory and Applications of Fractional Differential Equations, North-Holland Mathematics Studies 204, Elsevier, Amsterdam, 2006.
- V. S. Kiryakova, Generalized Fractional Calculus and Applications, Pitman Res Notes Math. 301, Longman Scientific & Technical; Harlow, Co-published with John Wiley, New York, 1994.
- V. S. Kiryakova, All the special functions are fractional differintegrals of elementary functions, J. Phys. A 30 (1997), no. 14, 5083-5103
- V. S. Kiryakova, Multiple (multi-index) Mittag-Leffler functions and relations to generalized fractional calculus, J. Comput. Appl. Math. 118 (2000), no. 1-2, 241-259. https://doi.org/10.1016/S0377-0427(00)00292-2
- V. S. Kiryakova, On two Saigo's fractional integral operators in the class of univalent functions, Fract. Calc. Appl. Anal. 9 (2006), no. 2, 159-176.
- H. Kober, On fractional integrals and derivatives, Quart. J. Math. Oxford Ser. 11 (1940), 193-212.
- Y. L. Luke, Mathematical Functions and Their Approximations, Academic Press, New York, San Francisco, and London, 1975.
- M.-J. Luo, G. V. Milovanovic, and P. Agarwal, Some results on the extended beta and extended hypergeometric functions, Appl. Math. Comput. 248 (2014), 631-651.
- O. I. Marichev, Volterra equation of Mellin convolution type with a Horn function in the kernel, Izv. AN BSSR Ser. Fiz.-Mat. Nauk 1 (1974), 128-129.
- A. M. Mathai, R. K. Saxena, and H. J. Haubold, The H-Function: Theory and Applications, Springer, New York, 2010.
- A. C. McBride and G. F. Roach (Editors), Fractional Calculus, (University of Strathclyde, Glasgow, Scotland, August 5-11, 1984) Research Notes in Mathematics 138, Pitman Publishing Limited, London, 1985.
- K. S. Miller and B. Ross, An Introduction to the Fractional Calculus and Fractional Differential Equations, Wiley and Sons, New York, 1993.
- K. Nishimoto, Fractional calculus, 1 (1984), 2 (1987), 3 (1989), 4 (1991), 5 (1996), Descartes Press, Koriyama, Japan.
- K. Nishimoto, An Essence of Nishimoto's Fractional Calculus, (Calculus of the 21st Century): Integration and Differentiation of Arbitrary Order, Descartes Press, Koriyama, 1991.
- K. Nishimoto (Editor), Fractional Calculus and Its Applications, (May 29-June 1, 1989), Nihon University (College of Engineering), Koriyama, 1990.
- K. B. Oldham and J. Spanier, The Fractional Calculus: Theory and Applications of Differentiation and Integration of Arbitrary Order, Academic Press, New York, 1974.
- E. Ozergin, Some Properties of Hypergeometric Functions, Ph. D. Thesis, Eastern Mediterranean University, North Cyprus, Turkey, 2011.
- E. Ozergin, M. A. Ozarslan, and A. Altin, Extension of gamma, beta and hypergeometric functions, J. Comput. Appl. Math. 235 (2011), no. 16, 4601-4610. https://doi.org/10.1016/j.cam.2010.04.019
- R. K. Parmar, A new generalization of Gamma, Beta, hypergeometric and confluent hypergeometric functions, Matematiche (Catania) 69 (2013), no. 2, 33-52.
- I. Podlubny, Fractional Differential Equations, Academic Press, San Diego, 1999.
- T. Pohlen, The Hadamard product and universal power series (Dissertation), Universitat Trier, 2009.
- E. D. Rainville, Special Functions, Macmillan Company, New York, 1960; Reprinted by Chelsea Publishing Company, Bronx, New York, 1971.
- B. Ross (Editor), Fractional Calculus and Its Applications, (West Haven, Connecticut; June 15-16, 1974), Lecture Notes in Mathematics 457, 1975.
- M. Saigo, A remark on integral operators involving the Gauss hypergeometric functions, Math. Rep. Kyushu Univ. 11 (1977/78), no. 2, 135-143.
- M. Saigo, On generalized fractional calculus operators, In: Recent Advances in Applied Mathematics (Proc. Internat. Workshop held at Kuwait Univ.), Kuwait Univ., Kuwait, (1996), 441-450.
- M. Saigo and A. A. Kilbas, Generalized fractional calculus of the H function, Fukuoka Univ. Sci. Rep. 29 (1999), no. 1, 31-45.
- M. Saigo and N. Maeda, More generalization of fractional calculus, In: Transform methods & special functions, Varna '96, 386-400, Bulgarian Acad. Sci., Sofia, 1998.
- S. G. Samko, A. A. Kilbas, and O. I. Marichev, Fractional Integrals and Derivatives: Theory and Applications, Gordon and Breach Science Publishers, Yverdon et alibi, 1993.
- R. K. Saxena and M. Saigo, Generalized fractional calculus of the H-function associated with the Appell function, J. Frac. Calc. 19 (2001), 89-104.
- R. Srivastava, Some properties of a family of incomplete hypergeometric functions, Russ. J. Math. Phys. 20 (2013), no. 1, 121-128. https://doi.org/10.1134/S1061920813010111
- R. Srivastava, Some generalizations of Pochhammer's symbol and their associated families of hypergeometric functions and hypergeometric polynomials, Appl. Math. Inf. Sci. 7 (2013), no. 6, 2195-2206. https://doi.org/10.12785/amis/070609
- R. Srivastava and N. E. Cho, Generating functions for a certain class of incomplete hypergeometric polynomials, Appl. Math. Comput. 219 (2012), no. 6, 3219-3225.
- R. Srivastava and N. E. Cho, Some extended Pochhammer symbols and their applications involving general- ized hypergeometric polynomials, Appl. Math. Comput. 234 (2014), 277-285.
- H. M. Srivastava and P. Agarwal, Certain fractional integral operators and the generalized incomplete hypergeometric functions, Appl. Appl. Math. 8 (2013), no. 2, 333-345.
- H. M. Srivastava, A. Cetinkaya, and I. O. Kiymaz, A certain generalized Pochhammer symbol and its applications to hypergeometric functions, Appl. Math. Comput. 226 (2014), 484-491.
- H. M. Srivastava, M. A. Chaudhry, and R. P. Agarwal, The incomplete Pochhammer symbols and their applications to hypergeometric and related functions, Integral Transforms Spec. Funct. 23 (2012), no. 9, 659-683. https://doi.org/10.1080/10652469.2011.623350
- H. M. Srivastava and J. Choi, Zeta and q-Zeta Functions and Associated Series and Integrals, Elsevier Science Publishers, Amsterdam, London and New York, 2012.
- H. M. Srivastava and P. W. Karlsson, Multiple Gaussian Hypergeometric Series, Halsted Press (Ellis Horwood Limited, Chichester), John Wiley and Sons, New York, Chichester, Brisbane and Toronto, 1985.
- H. M. Srivastava and R. K. Saxena, Operators of fractional integration and their applications, Appl. Math. Comput. 118 (2001), no. 1, 1-52.
- N. M. Temme, Special Functions: An Introduction to Classical Functions of Mathematical Physics, John Wiley and Sons, New York, Chichester, Brisbane and Toronto, 1996.
- F. G. Tricomi, Sulla funzione gamma incompleta, Ann. Mat. Pura Appl. (4) 31 (1950), 263-279. https://doi.org/10.1007/BF02428264
- E. T. Whittaker and G. N. Watson, A Course of Modern Analysis, An introduction to the general theory of infinite processes and of analytic functions; with an account of the principal transcendental functions.Reprint of the fourth (1927) edition.Cambridge Mathematical Library. Cambridge University Press, Cambridge, 1996.
Cited by
- On homogeneous second order linear general quantum difference equations vol.2017, pp.1, 2017, https://doi.org/10.1186/s13660-017-1471-3
- Non-Standard Finite Difference Schemes for Solving Variable-Order Fractional Differential Equations 2017, https://doi.org/10.1007/s12591-017-0378-2
- Exact travelling wave solutions for the local fractional two-dimensional Burgers-type equations vol.73, pp.2, 2017, https://doi.org/10.1016/j.camwa.2016.11.012
- Certain fractional kinetic equations involving the product of generalized k-Bessel function vol.55, pp.4, 2016, https://doi.org/10.1016/j.aej.2016.07.025
- (p, q)-Extended Bessel and Modified Bessel Functions of the First Kind vol.72, pp.1-2, 2017, https://doi.org/10.1007/s00025-016-0649-1
- On matrix fractional differential equations vol.9, pp.1, 2017, https://doi.org/10.1177/1687814016683359
- Comparison of optimal homotopy analysis method and fractional homotopy analysis transform method for the dynamical analysis of fractional order optical solitons vol.9, pp.3, 2017, https://doi.org/10.1177/1687814017692946
- On new applications of fractional calculus vol.37, pp.3, 2017, https://doi.org/10.5269/bspm.v37i3.18626
- The Nehari manifold for a boundary value problem involving Riemann–Liouville fractional derivative vol.2018, pp.1, 2018, https://doi.org/10.1186/s13662-018-1722-8
- On the solutions of certain fractional kinetic equations involving k-Mittag-Leffler function vol.2018, pp.1, 2018, https://doi.org/10.1186/s13662-018-1694-8
- Incomplete Caputo fractional derivative operators vol.2018, pp.1, 2018, https://doi.org/10.1186/s13662-018-1656-1
- Ulam–Hyers stability analysis to a class of nonlinear implicit impulsive fractional differential equations with three point boundary conditions vol.2019, pp.1, 2019, https://doi.org/10.1186/s13662-018-1943-x