References
- M. H. Annaby, On sampling theory associated with the resolvents of singular Sturm-Liouville problems, Proc. Amer. Math. Soc. 131 (2003), no. 6, 1803-1812. https://doi.org/10.1090/S0002-9939-02-06727-8
- M. H. Annaby, G. Freiling, and A. I. Zayed, Discontinuous boundary-value problems:Expansion and sampling theorems, J. Integral Equations Appl. 16 (2004), no. 1, 1-23. https://doi.org/10.1216/jiea/1181075255
- M. H. Annaby and H. A. Hassan, A sampling theorem associated with boundary-value problems with not necessarily simple eigenvalues, Int. J. Math. Math. Sci. 21 (1998), no. 3, 571-580. https://doi.org/10.1155/S0161171298000799
- M. H. Annaby, H. A. Hassan, and O. H. El-Haddad, Perturbed discrete Sturm-Liouville problems and associated sampling theorems, Rocky Mountain J. Math. 39 (2009), no. 6, 1781-1807. https://doi.org/10.1216/RMJ-2009-39-6-1781
- M. H. Annaby, H. A. Hassan, and O. H. El-Haddad, A perturbed Whittaker-Kotel'nikov-Shannon sampling theorem, J. Math. Anal. Appl. 381 (2011), no. 1, 64-79. https://doi.org/10.1016/j.jmaa.2011.03.070
- M. H. Annaby and A. I. Zayed, On the use of Green's function in sampling theory, J. Integral Equations Appl. 10 (1998), no. 2, 117-139. https://doi.org/10.1216/jiea/1181074218
- R. Boas, Entire Functions, Academic Press, New York, 1954.
- P. L. Butzer and R. J. Nessel, Fourier Analysis and Approximation, Birhkhauser, Basel, 1971.
- P. L. Butzer, G. Schmeisser, and R. L. Stens, An introduction to sampling analysis, Nonuniform sampling, 17-121, Inf. Technol. Transm. Process. Storage, Kluwer/Plenum, New York, 2001.
- P. L. Butzer and G. Schottler, Sampling theorems associated with fourth and higher order self-adjoint eigenvalue problems, J. Comput. Appl. Math. 51 (1994), no. 2, 159-177. https://doi.org/10.1016/0377-0427(92)00010-7
- L. L. Campbell, A comparison of the sampling theorems of Kramer and Whittaker, SIAM J. Appl. Math. 12 (1964), 117-130. https://doi.org/10.1137/0112011
- E. A. Catchpole, A Cauchy problem for an ordinary integro-differential equation, Proc. Roy. Soc. Edinburgh Sect. A 72 (1974), no. 1, 39-55.
- J. A. Cochran, The Analysis of Linear Integral Equations, McGraw-Hill, New York, 1972.
- W. N. Everitt and G. Nasri-Roudsari, Sturm-Liouville problems with coupled boundary conditions and Lagrange interpolation series, J. Comput. Anal. Appl. 1 (1999), no. 4, 319-347.
- W. N. Everitt and G. Nasri-Roudsari, Sturm-Liouville problems with coupled boundary conditions and Lagrange in-terpolation series II, Rend. Mat. Appl. (7) 20 (2000), 199-238.
- W. N. Everitt and A. Poulkou, Kramer analytic kernels and first-order boundary value problems, J. Comput. Appl. Math. 148 (2002), no. 1, 22-47.
- I. Gohberg and S. Goldberg, Basic Operator Theory, Birkhauser, Boston, 1980.
- A. H. Haddad, K. Yao, and J. B. Thomas, General methods for the derivation of sam-pling theorems, IEEE Trans. Inform. Theory 13 (1967), 227-230. https://doi.org/10.1109/TIT.1967.1053976
- J. R. Higgins, Sampling Theorey in Fourier and Signal Analysis: Foundations, Oxford University Press, Oxford, 1996.
- V. Kotel'nikov, On the carrying capacity of the ether and wire in telecommunications, (Russian) Material for the first all union conference on questions of communications, Izd. Red. Upr. Svyazi RKKA, Moscow, 1933.
- M. A. Naimark, Linear Differential Operators. Part I: Elementary Theory of Linear Differential Operators, George Harrap, London, 1967.
- R. Paley and N. Wiener Fourier Transforms in the Complex Domain, Amer. Math. Soc. Colloquium Publ. Ser. Vol 19, Amer. Math. Soc., Providence, RI, 1934.
- C. Shannon, Communication in the presence of noise, Proc. I.R.E. 37 (1949), 10-21.
- L. O. Silva and J. H. Toloza, Bounded rank-one perturbations in sampling theory, J. Math. Anal. Appl. 345 (2008), no. 2, 661-669. https://doi.org/10.1016/j.jmaa.2008.04.045
- I. Stakgold, Green's Functions and Boundary Value Problems, John Wiley, New York, 1987.
- E. Whittaker, On the functions which are represented by the expansion of the interpo-lation theory, Proc. Roy. Soc. Edinburgh Sec. A 35 (1915), 181-194. https://doi.org/10.1017/S0370164600017806
- A. I. Zayed, Advances in Shannon's Sampling Theory, CRC, Boca Raton, 1993.