DOI QR코드

DOI QR Code

소형셀 환경에서 사용자 컨텍스트 기반 무선 캐시 알고리즘

Wireless Caching Algorithm Based on User's Context in Smallcell Environments

  • Jung, Hyun Ki (Ajou University Department of Electrical and Computer Engineering) ;
  • Jung, Soyi (Ajou University Department of Electrical and Computer Engineering) ;
  • Lee, Dong Hak (Ajou University Department of Electrical and Computer Engineering) ;
  • Lee, Seung Que (Electronics and Telecommunications Research Institute) ;
  • Kim, Jae-Hyun (Ajou University Department of Electrical and Computer Engineering)
  • 투고 : 2016.04.30
  • 심사 : 2016.06.08
  • 발행 : 2016.07.31

초록

본 논문에서는 home 소형셀 대비 넓은 커버리지를 갖고 많은 사용자를 서비스 하는 enterprise/urban 소형셀 환경에서 적용할 수 있는 사용자 컨텍스트 기반 캐시 알고리즘을 제안한다. 소형셀 캐시 기법은 소형셀 사용자의 웹 트래픽을 소형셀 내부에 위치한 저장 공간에 저장하는 방법으로 코어망 트래픽을 감소시키는 효과가 있다. 본 논문에서는 기존의 알고리즘과 달리 Mobile Edge Computing(MEC)의 개념을 적용하여 소형셀 내부가 아닌 edge server에 사용자 트래픽을 캐시하며 사용자 특성을 반영하기 위해 사용자를 그룹화한다. 또한, 그룹별 저장 공간의 크기를 달리하고, 캐시 업데이트 주기를 캐시 적중률에 따라 변경하여 코어망으로부터 제공받는 트래픽을 감소하고자 하였다. 성능 분석 결과 기존 알고리즘 대비 캐시 적중률 측면에서 약 11%, cache efficiency 측면에서 약 5.5%의 성능 향상을 확인할 수 있었다.

In this paper, we propose a cache algorithm based on user's context for enterprise/urban smallcell environments. The smallcell caching method is to store mobile users' data traffic at a storage which is equipped in smallcell base station and it has an effect of reducing core networks traffic volume. In our algorithm, contrary to existing smallcell cache algorithms, the cache storage is equipped in a edge server by using a concept of the Mobile Edge Computing. In order to reflect user's characteristics, the edge server classifies users into several groups based on user's context. Also the edge server changes the storage size and the cache replacement frequency of each group to improve the cache efficiency. As the result of performance evaluation, the proposed algorithm can improve the cache hit ratio by about 11% and cache efficiency by about 5.5% compared to the existing cache algorithm.

키워드

참고문헌

  1. Y. K. Kim, S. H. Lee, and Y. J. Kim, "Trends on 5G communications," ETRI Electron. and Telecommun. Trends, vol. 30, no. 1, pp. 1-11, Feb. 2015.
  2. Samsung Electronics, 5G Vision White Paper, 2015.
  3. Cisco white paper, Cisco Visual Networking Index: Global Mobile Data Traffic Forecast Update, 2014-2019, Feb. 2015.
  4. N. H. Sung, Y. J. Choi, and J. W. Jang, "Joint operation of ABS with power control and derivation of an effective ABS ratio for LTE hetnet environments," J. KICS, vol. 40, no. 12, pp. 2381-2388, Dec. 2015. https://doi.org/10.7840/kics.2015.40.12.2381
  5. Y. Jang, E. Cho, and E. Hong, "Effect of interference mitigation technique and performance analysis for small cell in homogeneous networks," J. KICS, vol. 39C, no. 10, pp. 937-945, Oct. 2014. https://doi.org/10.7840/kics.2014.39C.10.937
  6. T. Wang, L. Song, and Z. Han, "Dynamic femtocaching for mobile users," in Proc. WCNC 2015, pp. 861-865, New Orleans, LA, Mar. 2015.
  7. J. N. Shim, B. Y. Min, K. Kim, and D. K. Kimg "Advanced femto-caching file placement technique for overlapped helper coverage," in Proc. VTC 2014 Spring, May 2014.
  8. M. S. ElBamby, M. Bennis, and M Latva-aho, "Content-aware user clustering and caching in wireless small cell networks," in Proc. ISWCS 2014, pp. 945-949, Barcelona, Spain, Aug. 2014.
  9. Z. Su and Q. Xu, "Contents distribution over content centric mobile social networks in 5G," IEEE Commun. Mag., vol. 53, no. 6, pp. 66-72, Jun. 2015. https://doi.org/10.1109/MCOM.2015.7120047
  10. Q. Xing, Y. Li, J. Wang, and Y, Han, "A user-relationship-based cache replacement strategy for mobile social network," in Proc. 2015 Int. Conf. Frontier of Comput. Sci. and Technol., Mar. 2015.
  11. S. Y. Jung and J. H. Kim, "Caching algorithm for core network offloading in smallcell environment," J. IEIE, vol. 52, Mar. 2015.
  12. S. Han, H. Park, and T. Kwon, "Shelf-life time based cache replacement policy suitable for web environment," J. KICS, vol. 40, no. 6, pp. 1091-1101, Jun. 2016.
  13. A. Balamash and M. Krunz, "An overview of web caching replacement algorithms," IEEE Commun. Surveys & Tuts., pp. 44-56, 2004.
  14. G. Orsini, D. Bade, and W. Lamersdorf, "Computing at the mobile edge: Designing elastic android applications for computation offloading," in Proc. WMNC 2015, pp. 112-119, Munich, Germany, Oct. 2015.
  15. S. Nunna, A, Kousaridas, M. Ibrahim, and M. Dillinger, "Enabling real-time context aware collaboration through 5G and mobile edge computing," in Proc. ITNG 2015, pp. 601-605, Las Vegas, NV, Apr. 2015.
  16. ETSI, Mobile-edge computing-introductory technical white paper, Sept. 2014.
  17. Small Cell Forum Release 1 Document 046.01.01, Small Cell Services, Feb. 2013.
  18. Naver, https://naver.com
  19. INTERNET TREND, http://internettrend.co.kr/trendForward.tsp

피인용 문헌

  1. MEC 환경에서의 Social Context를 이용한 트래픽 오프로딩 알고리즘 vol.42, pp.2, 2016, https://doi.org/10.7840/kics.2017.42.2.514
  2. 개인 프레즌스-선호 기반 지능형 로컬 서비스 시스템과 모바일 엣지 컴퓨팅 환경에서의 적용 방안 vol.42, pp.2, 2016, https://doi.org/10.7840/kics.2017.42.2.523