References
- Ali, F.A. (2002), "Is high performance concrete more susceptible to explosive spalling than normal strength concrete in fire?", Fire Mater., 26(3), 127-130. https://doi.org/10.1002/fam.791
- Ali, F.A., O'Connor, D. and Abu-Tair, A. (2001), "Explosive spalling of high-strength concrete columns in fire", Mag. Concrete Res., 53(3), 197-204. https://doi.org/10.1680/macr.2001.53.3.197
- Arita, F., Harada, K. and Miyamoto, K. (2002), "Thermal spalling of high-performance concrete during fire", Second International Workshop on Structures in Fire, Christchurch, New Zealand, 253-261.
- Bentz, D. (2000), "Fibers, percolation, and spalling of high-performance concrete", ACI Mater. J., 97(3), 351-359.
- Castillo, C. and Durrani, A.J. (1990), "Effect of transient high temperature on high-strength-concrete", ACI Mater. J., 87(1), 47-53.
- Dong, X., Ding, Y. and Wang, T. (2008), "Spalling and mechanical properties of fiber reinforced high-performance concrete subjected to fire", J. Wuhan University of Tech.-Mater. Sci. Ed., 743-749.
- Dwaikat, M.B. and Kodur, V.K.R. (2008), "A numerical approach for modeling the fire induced restraint effects in reinforced concrete beams", Fire Safety J., 43(4), 291-307. https://doi.org/10.1016/j.firesaf.2007.08.003
- Dwaikat, M.B. and Kodur, V.K.R. (2009a), "Hydrothermal model for predicting fire-induced spalling in concrete structural systems", Fire Safety J., 44(3), 425-434. https://doi.org/10.1016/j.firesaf.2008.09.001
- Dwaikat, M.B. and Kodur, V.K.R. (2009b), "Fire induced spalling in high strength concrete beams", Fire Tech., 46(1), 251-274. https://doi.org/10.1007/s10694-009-0088-6
- Hertz, K.D. (2003), "Limits for spalling of fire-exposure concrete", Fire Safety J., 38(2), 103-116. https://doi.org/10.1016/S0379-7112(02)00051-6
- Hertz, K.D. and Sorensen, L.S. (2005), "Test method for spalling of fire exposure concrete", Fire Safety J., 40(5), 466-476. https://doi.org/10.1016/j.firesaf.2005.04.001
- Kanema, M., Pliya, P., Noumowe, A. and Gallias, J. (2011), "Spalling, thermal, and hydrous behavior of ordinary and high-strength concrete subjected to elevated temperature", J. Mater. Civil Eng., 23(7), 921-930. https://doi.org/10.1061/(ASCE)MT.1943-5533.0000272
- Ko, J., Ryu, D. and Noguchi, T. (2011), "The spalling mechanism of high strength concrete under fire", Mag. Concrete Res., 63(5), 357-370. https://doi.org/10.1680/macr.10.00002
- Kodur, V.K.R. (1998), "Fire performance of high-strength concrete structural members", Can. J. Civil Eng., 25(6), 975-981. https://doi.org/10.1139/l98-023
- Kodur, V.K.R. (2000), "Spalling in high-strength concrete exposed to fire: concerns, causes, critical parameters and cures", Adv. Tech. Struct. Eng., Ed by Mohamed Elgaaly P.E., 1-9.
- Kodur, V.K.R. and Phan, L. (2007), "Critical factors governing the fire performance of high strength concrete systems", Fire Safety J., 42(6), 482-488. https://doi.org/10.1016/j.firesaf.2006.10.006
- Morita, T., Nishida, A. and Yamazaki, N. (1999), "An experimental study on spalling of high strength concrete elements under fire attack", Fire Safety Science-the Proceeding of the Sixth International Symposium, July 5-9, 1999, Poitiers, France, 855-866.
- Ozbolt, J., Kozar, I., Eligehausen, R. and Periskic, G. (2005), "Three-dimensional FE analysis of headed stud anchors exposed to fire", Comput. Concrete, 2(4), 249-266. https://doi.org/10.12989/cac.2005.2.4.249
- Savov, K., Lackner, R. and Mang, H.A. (2005), "Stability assessment of shallow tunnels subjected to fire load", Fire Safety J., 40(8), 745-763. https://doi.org/10.1016/j.firesaf.2005.07.004
- Sullivan, P.J.E. (2001), "Deterioration and spalling of high strength concrete under fire", Offshore Technology Report 2001/074, City University, London.
- Zeimla, M., Lacknera, R., Pesaventoc, F. and Schrefler, B.A. (2008), "Thermo-hydro-chemical couplings considered in safety assessment of shallow tunnels subjected to fire load", Fire Safety J., 43(2), 83-95. https://doi.org/10.1016/j.firesaf.2007.05.006
- Zhang, B. (2011), "Effects of moisture evaporation (weight loss) on fracture properties of high performance concrete subjected to high temperatures", Fire Safety J., 46(8), 543-549. https://doi.org/10.1016/j.firesaf.2011.07.010
-
Zhang, B. and Bicanic, N. (2002a), "Residual fracture toughness of normal-and high-strength gravel concrete after heating to
$600^{\circ}C$ ", ACI Mater. J., 99(3), 217-226. -
Zhang, B. and Bicanic, N. (2006), "Fracture energy of high-performance concrete at high temperatures up to
$450^{\circ}C$ : the effects of heating temperatures and testing conditions (hot and cold)", Mag. Concrete Res., 58(5), 277-288. https://doi.org/10.1680/macr.2006.58.5.277 - Zhang, B., Bicanic, N., Pearce, C.J. and Balabanic, G. (2000), "Residual fracture properties of normal-and high-strength concrete subject to elevated temperatures", Mag. Concrete Res., 52(2), 123-136. https://doi.org/10.1680/macr.2000.52.2.123
- Zhang, B., Bicanic, N., Pearce, C.J. and Phillips, D.V. (2002b), "Relationship between brittleness and moisture loss of concrete exposed to high temperatures", Cement Concrete Res., 32(3), 363-371. https://doi.org/10.1016/S0008-8846(01)00684-6
- Zhang, B., Cullen, M. and Kilpatrick, T. (2013), "Fracture toughness of high performance concrete subjected to elevated temperatures: the effects of heating temperatures and testing conditions (hot and cold)", The 2013 International Conference on Computational Technologies in Concrete Structures, 8-12 September 2013, Jeju, Korea.
- Zhang, H.L. and Davie, C.T. (2013), "A numerical investigation of influence of pore pressures and thermally induced stresses for spalling of concrete exposed to elevated temperatures", Fire Safety J., 59, 102-110. https://doi.org/10.1016/j.firesaf.2013.03.019
- Zhao, J., Zheng, J.J., and Peng, G.F. (2011), "Fire spalling modeling of high performance concrete", Appl. Mech. Mater., 52-54, 378-383. https://doi.org/10.4028/www.scientific.net/AMM.52-54.378
- Zheng,W.Z., Hou, X.M., Shi, D.S. and Xu, M.X. (2010), "Experimental study on concrete spalling in prestressed slabs subjected to fire", Fire Safety J., 45(5), 283-297. https://doi.org/10.1016/j.firesaf.2010.06.001
Cited by
- Temperature Effect on the Mechanical Properties of Very High Performance Concrete vol.34, 2018, https://doi.org/10.4028/www.scientific.net/JERA.34.29
- Fracture toughness of high performance concrete subjected to elevated temperatures Part 2 The effects of heating rate, exposure time and cooling rate vol.5, pp.5, 2017, https://doi.org/10.12989/acc.2017.5.5.513
- Temperature and humidity effects on behavior of grouts vol.5, pp.6, 2016, https://doi.org/10.12989/acc.2017.5.6.659
- Residual strength capacity of fire-exposed circular concrete-filled steel tube stub columns vol.6, pp.5, 2016, https://doi.org/10.12989/acc.2018.6.5.485
- Influence of mineral by-products on compressive strength and microstructure of concrete at high temperature vol.7, pp.4, 2016, https://doi.org/10.12989/acc.2019.7.4.263
- Thermal Path Reconstruction for Reinforced Concrete Under Fire vol.55, pp.5, 2016, https://doi.org/10.1007/s10694-019-00835-7
- Behavior of UHPC-RW-RC wall panel under various temperature and humidity conditions vol.9, pp.5, 2016, https://doi.org/10.12989/acc.2020.9.5.459