References
- T. Hyeon, S. Han, Y. E. Sung, K. W. Park, and Y. W. Kim, High-performance direct methanol fuel cell electrodes using solid-phase-synthesized carbon nanocoils, Angew. Chem. Int. Ed. Engl., 42, 4352-4356 (2003). https://doi.org/10.1002/anie.200250856
- C. A. Frysz, X. Shui, and D. D. L. Chung, Carbon filaments and carbon black as a conductive additive to the manganese dioxide cathode of a lithium electrolytic cell, J. Power Sources, 58, 41-54 (1996). https://doi.org/10.1016/0378-7753(95)02291-0
- M. Miranda-Herna'ndez, J. A. Ayala, and M. E. Rinco'n, Electrochemical storage of hydrogen in nanocarbon materials: electrochemical characterization of carbon black matrices, J. Solid State Electrochem., 7, 264-270 (2003). https://doi.org/10.1007/s10008-002-0335-y
- T. Gao, M. D. Woodka, B. S. Brunschwig, and N. S. Lewis, Applications and advances in electronic-nose technologies, Chem. Mater., 18, 5193-5202 (2006). https://doi.org/10.1021/cm060905x
- M. Zhu, C. J. Weber, Y. Yang, M. Konuma, U. Starke, K. Kern, and A. M. Bittner, Chemical and electrochemical ageing of carbon materials used in supercapacitor electrodes, Carbon, 46, 1829-1840 (2008). https://doi.org/10.1016/j.carbon.2008.07.025
- H. Li, R. Wang, and R. Cao, Physical and electrochemical characterization of hydrous ruthenium oxide/ordered mesoporous carbon composites as supercapacitor, Microporous Mesoporous Mater., 111, 32-38 (2008). https://doi.org/10.1016/j.micromeso.2007.07.002
-
J. M. Ko and K. M. Kim, Electrochemical properties of
$MnO_2$ /activated carbon nanotube composite as an electrode material for supercapacitor, Mater. Chem. Phys., 114, 837-841 (2009). https://doi.org/10.1016/j.matchemphys.2008.10.047 - E. Raymundo-Pinero, V. Khomenko, E. Frackowiakm, and F. Beguin, Performance of manganese oxide/CNTs composites as electrode materials for electrochemical capacitors, J. Electrochem. Soc., 152, A229-A235 (2005). https://doi.org/10.1149/1.1834913
- G.-X. Wang, B.-L. Zhang, Z.-L. Yu, and M.-Z. Qu, Manganese oxide/MWNTs composite electrodes for supercapacitors, Solid State Ionics, 176, 1169-1174 (2005). https://doi.org/10.1016/j.ssi.2005.02.005
- Z. Fan, J. Chen, M. Wang, K. Cui, H. Zhou, and Y. Kuang, Preparation and characterization of manganese oxide/CNT composites as supercapacitive materials, Diam. Relat. Mater., 15, 1478-1483 (2006). https://doi.org/10.1016/j.diamond.2005.11.009
- V. Subramanian, H. Zhu, and B. Wei, Synthesis and electrochemical characterizations of amorphous manganese oxide and single walled carbon nanotube composites as supercapacitor electrode materials, Electrochem. Commun., 8, 827-832 (2006). https://doi.org/10.1016/j.elecom.2006.02.027
- A. B. Fuertes, C. Lota, and T. A. Centeno, E. Frackowiak, Templated mesoporous carbons for supercapacitor application, Electrochim. Acta, 50, 2799-2805 (2005). https://doi.org/10.1016/j.electacta.2004.11.027
- S. Han, K. Lee, S. Oh, and T. Hyeon, The effect of silica template structure on the pore structure of mesoporous carbons, Carbon, 41, 1049-1056 (2003). https://doi.org/10.1016/S0008-6223(02)00439-6
- J. Yu, S. B. Yoon, and G. S. Chai, Ordered uniform porous carbon by carbonization of sugars, Carbon, 39, 1442-1446 (2001). https://doi.org/10.1016/S0008-6223(01)00095-1
- M. Toupin, D. Blanger, I. R. Hill, and D. Quinn, Performance of experimental carbon blacks in aqueous supercapacitors, J. Power Sources, 140, 203-210 (2005). https://doi.org/10.1016/j.jpowsour.2004.08.014
- S. A. Johnson, E. S. Brigham, P. J. Ollivier, and T. E. Mallouk, Effect of micropore topology on the structure and properties of zeolite polymer replicas, Chem. Mater., 9, 2448-2458 (1997). https://doi.org/10.1021/cm9703278
- T. Kyotani, T. Nagai, S. Inoue, and A. Tomita, Formation of new type of porous carbon by carbonization in zeolite nanochannels, Chem. Mater., 9, 609-615 (1997). https://doi.org/10.1021/cm960430h
- R. Ryoo, S. H. Joo, and S. Jun, Synthesis of highly ordered carbon molecular sieves via template-mediated structural transformation, J. Phys. Chem. B, 103, 7743-7746 (1999). https://doi.org/10.1021/jp991673a
- J. Lee, S. Yoon, T. Hyeon, S. M. Oh, and K. B. Kim, Synthesis of a new mesoporous carbon and its application to electrochemical double-layer capacitors, Chem. Commun., 2177-2178 (1999).
- T. Ohkubo, J. Miyawaki, K. Kaneko, R. Ryoo, and N. A. Seaton, Adsorption properties of templated mesoporous carbon (CMK-1) for nitrogen and supercritical methane experiment and GCMC simulation, J. Phys. Chem. B, 106, 6523-6528 (2002). https://doi.org/10.1021/jp0200369
- S. Han, S. Kim, H. Lim, W. Choi, H. Park, J. Yoon, and T. Hyeon, New nanoporous carbon materials with high adsorption capacity and rapid adsorption kinetics for removing humic acids, Microporous Mesoporous Mater., 58, 131-135 (2003). https://doi.org/10.1016/S1387-1811(02)00611-X
- A.-H. Lu, W. Schmidt, A. Taguchi, B. Spliethoff, B. Tesche, and F. Schuth, Taking nanocasting one step further: replicating CMK-3 as a silica material, Angew. Chem. Int. Ed. Engl., 41, 3639-3642 (2002).
- X. F. Guo, Y. S. Kim, and G. J. Kim, Hydrogenation of chiral nitrile on highly ordered mesoporous carbon-supported Pd catalysts, Catal. Today, 150, 22-27 (2010). https://doi.org/10.1016/j.cattod.2009.04.022
- D. Park, S. Jeon, J. Y. Yang, S. D. Choi, and G. J. Kim, Fabrication of meso/macroporous carbon monolith and its application as a support for adsorptive separation of D-amino acid from racemates, Bull. Korean Chem. Soc., 35, 1720-1726 (2014). https://doi.org/10.5012/bkcs.2014.35.6.1720
- R. Ryoo, S. H. Joo, M. Kruk, and M. Jaroniec, Ordered mesoporous carbons, Adv. Mater., 13, 677-681 (2001). https://doi.org/10.1002/1521-4095(200105)13:9<677::AID-ADMA677>3.0.CO;2-C
- S. H. Joo, S. J. Choi, I. Oh, J. Kwak, Z. Liu, O. Terasaki, and R. Ryoo, Ordered nanoporous arrays of carbon supporting high dispersions of platinum nanoparticles, Nature, 412, 169-172 (2001). https://doi.org/10.1038/35084046
- S. S. Kim and T. J. Pinnavaia, A low cost route to hexagonal mesostructured carbon molecular sieves, Chem. Commun., 2418-2419 (2001).
- S. B. Yoon, J. Y. Kim, and J. S. Yu, Synthesis of highly ordered nanoporous carbon molecular sieves from silylated MCM-48 using divinylbenzene as precursor, Chem. Commun., 559-560 (2001).
- J. Lee, K. Sohn, and T. Hyeon, Fabrication of novel mesocellular carbon foams with uniform ultralarge mesopores, J. Am. Chem. Soc., 123, 5146-5147 (2001). https://doi.org/10.1021/ja015510n
- J. Lee, J. Kim, and T. Hyeon, A facile synthesis of bimodal mesoporous silica and its replication for bimodal mesoporous carbon, Chem. Commun., 1138-1139 (2003).
- T. Kyotani, Control of pore structure in carbon, Carbon, 38, 269-286 (2000). https://doi.org/10.1016/S0008-6223(99)00142-6
- D. Gittins and I. F. Caruso, Multilayered polymer nanocapsules derived from gold nanoparticle templates, Adv. Mater., 12, 740-744 (2000).
- S. B. Yoon, K. Shon, J. Y. Kim, C. H. Shin, J. S. Yu, and T. Hyeon, Fabrication of carbon capsules with hollow macroporous core/mesoporous shell structures, Adv. Mater., 14, 19-21 (2002). https://doi.org/10.1002/1521-4095(20020104)14:1<19::AID-ADMA19>3.0.CO;2-X
-
X. F. Guo, Y. S. Kim, and G. J. Kim, Fabrication of
$SiO_2$ ,$Al_2O_3$ , and$TiO_2$ microcapsules with hollow core and mesoporous shell structure, J. Phys. Chem. C, 113, 8313-8319 (2009). https://doi.org/10.1021/jp8108122