DOI QR코드

DOI QR Code

Ex-situ Catalytic Pyrolysis of Korean Native Oak Tree over Microporous Zeolites

미세기공 제올라이트를 이용한 국내 수종 굴참나무의 간접 촉매 열분해

  • Kim, Young-Min (School of Environmental Engineering, University of Seoul) ;
  • Kim, Beom-Sik (School of Environmental Engineering, University of Seoul) ;
  • Chea, Kwang-Seok (School of Environmental Engineering, University of Seoul) ;
  • Jo, Tae Su (National Institute of Forest Science) ;
  • Kim, Seungdo (Department of Environmental Sciences and Biotechnology, Hallym University) ;
  • Park, Young-Kwon (School of Environmental Engineering, University of Seoul)
  • 김영민 (서울시립대학교 환경공학부) ;
  • 김범식 (서울시립대학교 환경공학부) ;
  • 채광석 (서울시립대학교 환경공학부) ;
  • 조태수 (국립산림과학원 바이오에너지연구센터) ;
  • 김승도 (한림대학교 환경생명공학과) ;
  • 박영권 (서울시립대학교 환경공학부)
  • Received : 2016.05.26
  • Accepted : 2016.06.01
  • Published : 2016.08.10

Abstract

Ex-situ catalytic pyrolysis of a Korean native oak tree over microporous zeolites (HZSM-5, HBeta, and HY) was performed by using a fixed bed reactor. The effect of sample to catalyst ratio and reaction temperature was also investigated to optimize production conditions of high quality bio-oil. Among three catalysts, HZSM-5 showed the highest aromatic formation due to its proper pore size and strong acidity. Although HY and HBeta also showed the catalytic activity, they produced larger amounts of coke due to their larger pore size. The smaller ratio of the sample to the catalyst and higher reaction temperature were also required to maximize the yields of aromatic hydrocarbons via the catalytic pyrolysis of oak tree over HZSM-5.

고정층 반응기를 이용하여 제올라이트(HZSM-5, HBeta, HY) 상에서 국내 수종 굴참나무의 간접 촉매 열분해를 수행하였다. 고품질 바이오오일 생산 최적 조건을 도출하기 위해 시료와 촉매의 비율과 반응 온도의 영향 또한 고찰하였다. 세 종의 촉매 중에서 HZSM-5가 적절한 기공크기와 강한 산도로 인해 가장 높은 방향족 화합물 형성능을 나타내었다. HY와 HBeta 또한 촉매능을 가졌으나, 큰 기공크기로 인해 많은 양의 코크가 형성되었다. HZSM-5 상에서 참나무의 촉매 열분해를 통해 방향족 화합물의 수율을 극대화하기 위해서는 낮은 시료/촉매비와 높은 반응 온도가 요구됨을 확인하였다.

Keywords

References

  1. M.-J. Jeon, J.-K. Jeon, D. J. Suh, S. H. Park, Y. J. Sa, S. H. Joo, and Y.-K. Park, Catalytic pyrolysis of biomass components over mesoporous catalysts using Py-GC/MS, Catal. Today, 204, 170-178 (2013). https://doi.org/10.1016/j.cattod.2012.07.039
  2. H. J. Park, J.-K. Jeon, D. J. Suh, Y.-W. Suh, H. S. Heo, and Y.-K. Park, Catalytic vapor cracking for improvement of bio-oil quality, Catal. Surv. Asia, 15, 161-180 (2011). https://doi.org/10.1007/s10563-011-9119-7
  3. G. W. Huber, S. Iborra, and A. Corma, Synthesis of transportation fuels from biomass: chemistry, catalysts, and engineering, Chem. Rev., 106, 4044-4098 (2006). https://doi.org/10.1021/cr068360d
  4. S. H. Park, H. J. Cho, C. Ryu, and Y.-K. Park, Removal of copper(II) in aqueous solution using pyrolytic biochars derived from red macroalga Porphyra tenera, J. Ind. Eng. Chem., 36, 314-319 (2016). https://doi.org/10.1016/j.jiec.2016.02.021
  5. C. H. Ko, S. H. Park, J.-K. Jeon, D. J. Suh, K.-E. Jeong, and Y.-K. Park, Upgrading of biofuel by the catalytic deoxygenation of biomass, Korean J. Chem. Eng., 29, 1657-1665 (2012). https://doi.org/10.1007/s11814-012-0199-5
  6. C. Liu, H. Wang, A. M. Karim, J. Sun, and Y. Wang, Catalytic fast pyrolysis of lignocellulosic biomass, Chem. Soc. Rev., 43, 7594-7623 (2014). https://doi.org/10.1039/C3CS60414D
  7. Y.-M. Kim, H. W. Lee, S. Kim, C. Watanabe, and Y.-K. Park, Non-isothermal pyrolysis of Citrus unshiu peel, Bioenergy Res., 8, 431-439 (2015). https://doi.org/10.1007/s12155-014-9534-5
  8. T. U. Han, Y.-M. Kim, C. Watanabe, N. Teramae, Y.-K. Park, and S. Kim, Analytical pyrolysis properties of waste medium-density fiberboard and particle board, J. Ind. Eng. Chem., 32, 345-352 (2015). https://doi.org/10.1016/j.jiec.2015.09.008
  9. T.-A. Ngo, J. Kim, and S.-S. Kim, Fast pyrolysis of palm kernel cake using a fluidized bed reactor: Design of experiment and characteristics of bio-oil, J. Ind. Eng. Chem., 19, 137-143 (2013). https://doi.org/10.1016/j.jiec.2012.07.015
  10. H. W. Lee, S. H. Park, J.-K. Jeon, R. Ryoo, W. Kim, D. J. Suh, and Y.-K. Park, Upgrading of bio-oil derived from biomass constituents over hierarchical unilamellar mesoporous MFI nanosheets, Catal. Today, 232, 119-126 (2014). https://doi.org/10.1016/j.cattod.2013.12.015
  11. H. S. Heo, S. G. Kim, K.-E. Jeong, J.-K. Jeon, S. H. Park, J. M. Kim, S.-S. Kim, and Y.-K. Park, Catalytic upgrading of oil fractions separated from food waste leachate, Bioresour. Technol., 102, 3952-3957 (2011). https://doi.org/10.1016/j.biortech.2010.11.099
  12. H. W. Lee, S. J. Choi, S. H. Park, J.-K. Jeon, S.-C. Jung, S. H. Joo, and Y.-K. Park, Catalytic conversion of Laminaria japonica over microporous zeolites, Energy, 66, 2-6 (2014). https://doi.org/10.1016/j.energy.2013.05.023
  13. B.-S. Kim, Y.-M. Kim, H. W. Lee, J. Jae, D. H. Kim, S.-C. Jung, C. Watanabe, and Y.-K. Park, Catalytic copyrolysis of cellulose and thermoplastics over HZSM-5 and HY, ACS Sustain. Chem. Eng., 4, 1354-1363 (2016). https://doi.org/10.1021/acssuschemeng.5b01381
  14. Y.-M. Kim, J. Jae, H. W. Lee, T. U. Han, H. Lee, S. H. Park, S. Kim, C. Watanabe, and Y.-K. Park, Ex-situ catalytic pyrolysis of citrus fruit peels over mesoporous MFI and Al-MCM-41, Energy Convers. Manage., Doi: 10.1016/j.enconman.2016.02.065.
  15. H. K. Kang, I.-G. Lee, K.-H. Lee, B.-S. Kim, T. S. Jo, K.-S. Chea, S. H. Park, S.-C. Jung, and Y.-K. Park, Catalytic rapid pyrolysis of Quercus variabilis over nanoporous catalysts, J. Nanomater., 2015, 251974 (2015).
  16. S. H. Jin, H. W. Lee, C. Ryu, J.-K. Jeon, and Y.-K. Park, Catalytic fast pyrolysis of Geodae-Uksae 1 over zeolites, Energy, 81, 41-46 (2015). https://doi.org/10.1016/j.energy.2014.10.059
  17. H. J. Park, H. S. Heo, J.-K. Jeon, J. Kim, R. Ryoo, K.-E. Jeong, and Y.-K. Park, Highly valuable chemicals production from catalytic upgrading of radiata pine sawdust-derived pyrolytic vapors over mesoporous MFI zeolites, Appl. Catal. B: Environ., 95, 365-373 (2010). https://doi.org/10.1016/j.apcatb.2010.01.015
  18. Y.-M. Kim, S. Kim, T. U. Han, Y.-K. Park, and C. Watanabe, Pyrolysis reaction characteristics of Korean pine (Pinus Koraiensis) nut shell, J. Anal. Appl. Pyrolysis, 110, 435-441 (2014). https://doi.org/10.1016/j.jaap.2014.10.013
  19. K. Wang, K. H. Kim, and R. C. Brown, Catalytic pyrolysis of individual components of lignocellulosic biomass, Green Chem., 16, 727-735 (2014). https://doi.org/10.1039/C3GC41288A
  20. B.-S. Kim, Y.-M. Kim, J. Jae, C. Watanabe, S. Kim, S.-C. Jung, S. C. Kim, and Y.-K. Park, Pyrolysis and catalytic upgrading of Citrus unshiu peel, Bioresour. Technol., 194, 312-319 (2015). https://doi.org/10.1016/j.biortech.2015.07.035
  21. J. Jae, G. A. Tompsett, A. J. Foster, K. D. Hammonda, S. M. Auerbach, R. F. Lobo, and G. W. Huber, Investigation into the shape selectivity of zeolite catalysts for biomass conversion, J. Catal., 279, 257-268 (2011). https://doi.org/10.1016/j.jcat.2011.01.019
  22. B.-S. Kim, C. S. Jeong, J. M. Kim, S. B. Park, S. H. Park, J.-K. Jeon, S.-C. Jung, S. C. Kim, and Y.-K. Park, Ex situ catalytic upgrading of lignocellulosic biomass components over vanadium contained H-MCM-41 catalysts, Catal. Today, 265, 184-191 (2016). https://doi.org/10.1016/j.cattod.2015.08.031

Cited by

  1. Upgrading of pyrolysis bio-oil using WO3/ZrO2 and Amberlyst catalysts: Evaluation of acid number and viscosity vol.34, pp.8, 2017, https://doi.org/10.1007/s11814-017-0126-x
  2. Progress in the design of zeolite catalysts for biomass conversion into biofuels and bio-based chemicals vol.60, pp.1, 2018, https://doi.org/10.1080/01614940.2017.1389109
  3. Catalytic Copyrolysis of Cork Oak and Waste Plastic Films over HBeta vol.8, pp.8, 2018, https://doi.org/10.3390/catal8080318
  4. From 3D to 2D zeolite catalytic materials pp.1460-4744, 2018, https://doi.org/10.1039/C8CS00370J
  5. Stabilization of bio-oil over a low cost dolomite catalyst vol.35, pp.4, 2018, https://doi.org/10.1007/s11814-018-0002-3
  6. Catalytic Pyrolysis of Waste Paper Cup Containing Coffee Residuals vol.29, pp.2, 2016, https://doi.org/10.14478/ace.2018.1004
  7. The Effect of Biomass Torrefaction on the Catalytic Pyrolysis of Korean Cork Oak vol.29, pp.3, 2018, https://doi.org/10.14478/ace.2018.1050
  8. Pyrolysis of Waste Oriental Medicine Byproduct Obtained from the Decoction Process of Achyranthes Root vol.29, pp.4, 2016, https://doi.org/10.14478/ace.2018.1068
  9. Adsorptive removal of odour substances and NO and catalytic esterification using empty fruit bunch derived biochar vol.28, pp.None, 2016, https://doi.org/10.5714/cl.2018.28.081