References
- J. Ban, J. L. Arellano, R. F. Aguilera, and M. Tallet, OPEC 2015 World Oil Outlook, 1-361 (2015).
- US Ministry of Defense, Global Strategic Trends-Out to 2045, Fifth Edition (2014).
- R. F. Meyer, E. D. Attanasi, and P. A. Freeman, Heavy Oil and Natural Bitumen Resources in Geological Basins of the World, US Department of Interior & US Geological Survey Open File-Report 2007-1084 (2007).
- British Petroleum, BP Statistical Review of World Energy, June (2015).
- L. Hughes and J. Rudolph, Future world oil production: growth, plateau, or peak?, Curr. Opin. Environ. Sustain., 3, 335-234 (2011). https://doi.org/10.1016/j.cosust.2011.05.001
- O. Muraza and A. Galadima, Aquathermolysis of heavy oil: A review and perspective on catalyst development, Fuel, 157, 219-231 (2015). https://doi.org/10.1016/j.fuel.2015.04.065
- N. L. Madureira, Key Concepts in Energy, pp. 125-126, Springer International Publishing (2014).
- S. Sorrell, R. Miller, R. Bentley, and J. Speirs, Oil futures: A comparison of global supply forecasts, Energy Policy, 38, 4990-5003 (2010). https://doi.org/10.1016/j.enpol.2010.04.020
- V. Lam, G. Li, C. Song, J. Chen, C. Fairbridge, R. Hui, and J. Zhang, A review of electrochemical desulfurization technologies for fossil fuels, Fuel Process. Technol., 98, 30-38 (2012). https://doi.org/10.1016/j.fuproc.2012.01.022
- World Energy Council, 2010 Survey of Energy Resources, 123-150 (2010).
- A. Bera and T. Babadagli, Status of electromagnetic heating for enhanced heavy oil/bitumen recovery and future prospects: A review, Appl. Energy, 151, 206-226 (2015). https://doi.org/10.1016/j.apenergy.2015.04.031
- O. Muraza, Hydrous pyrolysis of heavy oil using solid acid minerals for viscosity reduction, J. Anal. Appl. Pyrolysis, 114, 1-10 (2015). https://doi.org/10.1016/j.jaap.2015.04.005
- H. R. Hao, H. J. Su, G. Chen, J. R. Zhao, and L. Hong, Viscosity reduction of heavy oil by aquathermolysis with coordination complex at low temperature, The Open Fuels Energy Sci. J., 8, 93-98 (2015). https://doi.org/10.2174/1876973X01508010093
- P. R. Kapadia, M. S. Kallos, and I. D. Gates, A review of pyrolysis, aquathermolysis, and oxidation of Athabasca bitumen, Fuel Process. Technol., 131, 270-289 (2015). https://doi.org/10.1016/j.fuproc.2014.11.027
- M. Khalil, R. L. Lee, and N. Liu, Hematite nanoparticles in aquathermolysis: A desulfurization study of thiophene, Fuel, 145, 214-220 (2015). https://doi.org/10.1016/j.fuel.2014.12.047
- H. C. Kim, W. J. Jeong, W. C. Lee, and S. K. Park, Demetallization by MCM-48 from asphaltene of vacuum residual oils: Analysis by UV-visible spectroscopy, Asian J. Chem., 27, 4288-4290 (2015). https://doi.org/10.14233/ajchem.2015.19516
- L. Lin, F. Zeng, and Y. Gu, A circular solvent chamber model for simulating the VAPEX heavy oil recovery process, J. Pet. Sci. Eng., 118, 27-39 (2014). https://doi.org/10.1016/j.petrol.2014.03.010
- H. H. Kiasari, A. H. Sarapardeh, S. Mighani, A. H. Mohammadi, and B. S. Sola, Effect of operational parameters on SAGD performance in a dip heterogeneous fractured reservoir, Fuel, 122, 82-93 (2014). https://doi.org/10.1016/j.fuel.2013.12.057
- Y. H. Shokrlu, Y. Maham, X. Tan, T. Babadagli, and M. Gray, Enhancement of the efficiency of in situ combustion technique for heavy-oil recovery by application of nickel ions, Fuel, 105, 397-407 (2013). https://doi.org/10.1016/j.fuel.2012.07.018
- N. Mosavat and F. Torabi, Experimental evaluation of the performance of carbonated water injection (CWI) under various operating conditions in light oil systems, Fuel, 123, 274-284 (2014). https://doi.org/10.1016/j.fuel.2014.01.077
- D. W. Zhao, J. Wang, and I. D. Gates, Optimized solvent-aided steam-flooding strategy for recovery of thin heavy oil reservoirs, Fuel, 112, 50-59 (2013). https://doi.org/10.1016/j.fuel.2013.05.025
- F. R. Ahmadun, A. Pendashteh, L. C. Abdullah, D. R. A. Biak, S. S. Madaeni, and Z. Z. Abidin, Review of technologies for oil and gas produced water treatment, J. Hazard. Mater., 170, 530-551 (2009). https://doi.org/10.1016/j.jhazmat.2009.05.044
- J. Peng, G. Q. Tang, and A. R. Kovscek, Oil chemistry and its impact on heavy oil solution gas drive, J. Pet. Sci. Eng., 66, 47-59 (2009). https://doi.org/10.1016/j.petrol.2009.01.005
- R. C. K. Wong and B. B. Maini, Gas bubble growth in heavy oil-filled sand packs under undrained unloading, J. Pet. Sci. Eng., 55, 259-270 (2007). https://doi.org/10.1016/j.petrol.2006.08.006
- J. Wang, Y. Z. Yuan, L. Zhang, and R. Wang, The influence of viscosity on stability of foamy oil in the process of heavy oil solution gas drive, J. Pet. Sci. Eng., 66, 69-74 (2009). https://doi.org/10.1016/j.petrol.2009.01.007
-
D. Yuan, J. Hou, Z. Song, Y. Wang, M. Luo, and Z. Zheng, Residual oil distribution characteristic of fractured-cavity carbonate reservoir after water flooding and enhanced oil recovery by
$N_2$ flooding of fractured-cavity carbonate reservoir, J. Pet. Sci. Eng., 129, 15-22 (2015). https://doi.org/10.1016/j.petrol.2015.03.016 - J. B. Hyne, J. W. Greidanus, J. D. Tyrer, et al., In: 2nd Int. Conf. "The Future of Heavy Crude and Tar Sands." Caracas, Venezuela, 7-17 February 1982, pp. 404-411, McGraw Hill, New York (1984).
- Y. H. Shokrlu and T. Babadagli, Viscosity reduction of heavy oil/bitumen using micro-and nano-metal particles during aqueous and non-aqueous thermal applications, J. Pet. Sci. Eng., 119, 210-220 (2014). https://doi.org/10.1016/j.petrol.2014.05.012
- M. F. Ali and S. Abbas, A review of methods for the demetallization of residual fuel oils, Fuel Process. Technol., 87, 573-584 (2006). https://doi.org/10.1016/j.fuproc.2006.03.001
- J. G. Reynolds, Removal of nickel and vanadium from heavy crude oils by exchange reactions, Prepr. Pap.-Am. Chem. Soc., Div. Fuel Chem., 49, 79-80 (2004).
- F. Iskandar, E. Dwinanto, M. Abdullah, Khairurrijal, and O. Muraza, Viscosity reduction of heavy oil using nanocatalyst in aquathermolysis reaction, KONA Powder Part. J., 33, 3-16 (2016). https://doi.org/10.14356/kona.2016005
- F. Zhao, X. Wang, Y. Wang, and Y. Shi, The catalytic aquathermolysis of heavy oil in the presence of a hydrogen donor under reservoirs conditions, J. Chem. Pharm. Res., 6(5), 2037-2041 (2014).
- S. K. Maity, J. Ancheyta, and G. Marroquin, Catalytic aquathermolysis used for viscosity reduction of heavy crude oils: A review, Energy Fuels, 24, 2809-2816 (2010). https://doi.org/10.1021/ef100230k
-
Y. Wang, Y. Chen, J. He, P. Li, and C. Yang, Mechanism of catalytic aquathermolysis: Influences on heavy oil by two types of efficient catalytic ions:
$Fe^{3+}$ and$Mo^{6+}$ , Energy Fuels, 24, 1502-1510 (2010). https://doi.org/10.1021/ef901339k - C. Wu, G. L. Lei, C. J. Yao, K, J. Sun, P. Y. Gai, and Y. B. Cao, Mechanism for reducing the viscosity of extra-heavy oil by aquathermolysis with an amphiphilic catalyst, J. Fuel Chem. Technol., 38, 684-690 (2010). https://doi.org/10.1016/S1872-5813(11)60004-2
- H. X. Xu and C. S. Pu, Experimental study of heavy oil underground aquathermolysis using catalyst and ultrasonic, J. Fuel. Chem. Technol., 39, 606-610 (2011). https://doi.org/10.1016/S1872-5813(11)60037-6
- H. Wang, Y. Wu, L. He, and Z. Liu, Supporting tungsten oxide on zirconia by hydrothermal and impregnation methods and its use as a catalyst to reduce the viscosity of heavy crude oil, Energy Fuels, 26, 6518-6527 (2012). https://doi.org/10.1021/ef301064b
-
P. Jing, Q. Li, M. Han, D. Sun, L. Jia, and W. Fang, Effect of
$Ni^{2+}$ and$Sn^{2+}$ modified$SO_4\;^{2-}$ /$ZrO_2$ solid super-acid catalysts on visbreaking of heavy petroleum oil, Shiyou Huagong / Petrochem. Technol., 36, 237-241 (2007). - D. H. Freeman and T. C. O'Haner, Derivative spectrophotometry of petroporphyrins, Energy Fuels, 4, 688-694 (1990). https://doi.org/10.1021/ef00024a012
- C. Ovalles, P. R. Unda, J. Bruzual, and A. Salazar, Upgrading of extra-heavy crude using hydrogen donor under steam injection conditions: Characterization by pyrolysis GC-MS of the asphaltenes and effects of a radical initiator, Am. Chem. Soc. Div. Fuel. Chem., 48, 59-60 (2003).
- N. N. Petrukhina, G. P. Kayukova, G. V. Romanov, B. P. Tumanyan, L. E. Foss, I. P. Kosachev, R. Z. Musin, A. I. Ramazanova, and A. V. Vakhin, Conversion processes for high-viscosity heavy crude oil in catalytic and noncatalytic aqiathermolysis, Chem. Technol. Fuels Oils, 50, 315-326 (2014). https://doi.org/10.1007/s10553-014-0528-y
- B. P. Tumanyan, G. V. Romanov, D. K. Nurgaliev, G. P. Kayukova, and N. N. Petrukhina, Promising aspects of heavy oil and native asphalt conversion under field conditions, Chem. Technol. Fuels Oils, 50, 185-188 (2014). https://doi.org/10.1007/s10553-014-0506-4
- M. Bahram and P. Kobra, Determination of Vanadyl Porphyrins by Liquid-liquid microextraction and nano-baskets of p-tert-Calix[4 ]arene bearing di-[N-(X)sulfonye carboxamide] and di-(1-propoxy) in ortho-cone conformation, Chem. Res. Chin. Univ., 28(5), 807-813 (2012).
- J. N. R. Olvera, G. J. Gutierrez, J. A. R. Serrano, A. M. Ovando, V. G. Febles, and L. D. B. Arceo, Use of unsupported, mechanically alloyed NiWMoC nanocatalyst to reduce the viscosity of aquathermolysis reaction of heavy oil, Catal. Commun., 43, 131-135 (2014). https://doi.org/10.1016/j.catcom.2013.09.027
- M. A. Banares and J. L. G. Fierro, Selective oxidation of methane to formaldehyde on supported molybdate catalysts, Catal. Letters, 17, 205-211 (1993). https://doi.org/10.1007/BF00766143
- J. S. F. Pereira, D. P. Moraes, F. G. Antes, L. O. Diehl, M. F. P. Santos, R. C. I. Guimaraes, T. C. O. Fonseca, V. L. Dressler, and E. M. M. Flores, Determination of metals and metalloids in light and heavy crude oil by ICP-MS after digestion by microwave-induced combustion, Microchem. J., 96, 4-11 (2010). https://doi.org/10.1016/j.microc.2009.12.016
-
Y. Chen, T. Wang, J. Lu, and C. Wu, The viscosity reduction of nano-keggin-
$K_3PMo_{12}O_{40}$ in catalytic aquathermolysis of heavy oil, Fuel, 88, 1426-1434 (2009). https://doi.org/10.1016/j.fuel.2009.03.011 - Y. Chen, C. Yang, and Y. Wang, Gemini catalyst for catalytic aquathermolysis of heavy oil, J. Anal. Appl. Pyrolysis, 89, 159-165 (2010). https://doi.org/10.1016/j.jaap.2010.07.005
- H. Fan, Y. Zhang, and Y. Lin, The catalytic effects of minerals on aquathermolysis of heavy oils, Fuel, 83, 2035-2039 (2004). https://doi.org/10.1016/j.fuel.2004.04.010
- S. Merissa, P. Fitriani, F. Iskandar, M. Abdullah, and Khairurrijal, Preliminary study of natural zeolite as catalyst for decreasing the viscosity of heavy oil, Padjadjaran International Physics Symposium, PIPS-2013, 131-134 (2013).
- A. S. Junaid, W. Wang, C. Street, M. Rahman, M. Gersbach, S. Zhou, W. McCaffrey, and S. M. Kuznicki, Viscosity reduction and upgrading of Athabasca oilsands bitumen by natural zeolite cracking, Int. J. Chem. Mol. Nucl. Mater. Metallur. Eng., 4, 609-614 (2010).
- O. Korkuna, R. Leboda, J. S. Zieba, T. Vrublevska, V. M. Gunko, and J. Ryczkowski, Structural and physicochemical properties of natural zeolites: clinoptilolite and mordenite, Microporous Mesoporous Mater., 87, 243-254 (2006). https://doi.org/10.1016/j.micromeso.2005.08.002
- K. A. Gould, Oxidative demetallization of petroleum asphaltenes and residua, Fuel, 59, 733-736 (1980). https://doi.org/10.1016/0016-2361(80)90029-0
- A. Atesa, G. Azimic, K. H. Choi, W. H. Green, and M. T. Timko, The role of catalyst in supercritical water desulfurization, Appl. Catal. B, 147, 144-155 (2014). https://doi.org/10.1016/j.apcatb.2013.08.018
- M. Sattarin, H. Modarresi, H. Talachi, and M. Teymori, Solvent deasphalting of vacuum residue in a bench-scale unit, Pet. Coal, 48(3), 14-19 (2006).
- R. N. Magomedov, A. Z. Popova, T. A. Maryutina, K. M. Kadiev, and S. N. Khadzhiev, Current status and prospects of demetallization of heavy petroleum feedstock (Review), Pet. Chem., 55, 267-290 (2015).
- H. Jo, S. G. Moun, Y. M. Jo, and Y. Chung, A patent analysis on impurity removal and catalysts for crude oil purification, Clean Technol., 16, 1-11 (2010).
- A. K. Lee, A. M. Murray, and J. G. Reynolds, Metallopetroporphyrins as process indicators: Separation of petroporphyrins in green river oil shale pyrolysis products, Fuel Sci. Technol. Int., 13, 1081-1097 (1995). https://doi.org/10.1080/08843759508947723
- A. Treibs, On the chromophores of porphyrin systems, Ann. N. Y. Acad. Sci., 206, 97-115 (1973). https://doi.org/10.1111/j.1749-6632.1973.tb43207.x
- H. Fukuyama, S. Teraia, M. Uchidab, J. L. Cano, and J. Ancheyta, Active carbon catalyst for heavy oil upgrading, Catal. Today, 98, 207-215 (2004). https://doi.org/10.1016/j.cattod.2004.07.054
- P. Bruggemann, F. Baitalow, P. Seifert, B. Meyer, and H. Schlichting, Behaviour of heavy metals in the partial oxidation of heavy fuel oil, Fuel Process. Technol., 91, 211-217 (2010). https://doi.org/10.1016/j.fuproc.2009.09.020
- M. Soylak, A. U. Karatepe, L. Elci, and M. Dogan, Column preconcentration/ separation and atomic absorption spectrometric determinations of some heavy metals in table salt samples using Amberlite XAD-1180, Turk. J. Chem., 27, 235-242 (2003).
- L. Li, N. Tang, Y. Wang, W. Cen, J. Liu, and Y. Zhou, Investigation of hexagonal mesoporous silica-supported composites for trace moisture adsorption, Nano Scale Res. Letters, 10, 1-7 (2015). https://doi.org/10.1186/1556-276X-10-1
- S. Wang, X. Xu, J. Yang, and J. Gao, Effect of the carboxymethyl chitosan on removal of nickel and vanadium from crude oil in the presence of microwave irradiation, Fuel Process. Technol., 92, 486-492 (2011). https://doi.org/10.1016/j.fuproc.2010.11.001
- A. J. Varma, S. V. Deshpande, and J. F. Kennedy, Metal complexation by chitosan and its derivatives: a review, Carbohydr. Polym., 55, 77-93 (2004). https://doi.org/10.1016/j.carbpol.2003.08.005
- I. Lukec, K. S. Bionda, and D. Lukec, Prediction of sulphur content in the industrial hydrotreatment process, Fuel Process. Technol., 89, 292-300 (2008). https://doi.org/10.1016/j.fuproc.2007.11.032
- S. B. Seo, T. Kajiuchi, D. I. Kim, S. H. Lee, and H. K. Kim, Preparation of water soluble chitosan blendmers and their application to removal of heavy metal ions from wastewater, Macromol. Res., 10, 103-107 (2002). https://doi.org/10.1007/BF03218298
- J. Luan, A. Li, T. Su, and X. Li, Translocation and toxicity assessment of heavy metals from circulated fluidized-bed combustion of oil shale in Huadian, China, J. Hazard. Mater., 166, 1109-1114 (2009). https://doi.org/10.1016/j.jhazmat.2008.12.023
-
N. N. Nassar, M. M. Husein, and P. P. Almao, Ultradispersed particles in heavy oil: Part II, sorption of
$H_2$ S(g), Fuel Process. Technol., 91, 169-174 (2010). https://doi.org/10.1016/j.fuproc.2009.09.008 - H. O. Bakare, A. O. Esan, and O. M. Olabemiwo, Characterisation of Agbabu natural bitumen and its fractions using Fourier transform infrared spectrometry, Chem. Mater. Res., 7, 1-11 (2015).
- Y. Yamada, S. Matsumoto, H. Kakiyama, and H. Honda, Removal of heavy metal contained in petroleum heavy oil, Japanese Patent 54-110206 (1979).
Cited by
- Aquathermolysis 반응에 의한 감압잔사유의 개질 vol.28, pp.4, 2016, https://doi.org/10.14478/ace.2017.1045
- Influence of Metal Oxides and Their Precursors on the Composition of Final Products of Aquathermolysis of Raw Ashalchin Oil vol.9, pp.2, 2016, https://doi.org/10.3390/pr9020256
- Effect of the Catalytic Aquathermolysis Process on the Physicochemical Properties of a Colombian Crude Oil vol.35, pp.6, 2016, https://doi.org/10.1021/acs.energyfuels.0c04142