• Title/Summary/Keyword: aquathermolysis

Search Result 3, Processing Time 0.018 seconds

Refining of Vacuum Residues by Aquathermolysis Reaction (Aquathermolysis 반응에 의한 감압잔사유의 개질)

  • Ko, Jin Young;Park, Dong Ho;Park, Seung-Kyu
    • Applied Chemistry for Engineering
    • /
    • v.28 no.4
    • /
    • pp.467-472
    • /
    • 2017
  • In this study, the reforming reaction of vacuum residue (VR) was carried out using aquathermolysis reaction. VR showed a prone to decrease the amount of resins and asphaltenes in the constituents, and to increase saturates and aromatics when reacting with steam at 30 bar and above $300^{\circ}C$ for 24 h. This tendency became more evident when the amount of steam used was excessive than the amount of VR. When the aquathermolysis reaction was performed at $300^{\circ}C$ and 30 bar for 48 h, the VR composition was changed from the initial state (S/A/R/A = 7.3%/43.7%/25.6%/23.5%) to final state (S/A/R/A = 6.8%/57%/12.2%/24.0%), and the contents of the resins decreased by 13% and the aromatic compounds increased by 13%. The viscosity decreased from 880,000 cp to 290,000 cp by 68%. When 10% of decalin, which is easy to provide hydrogen, was added, the viscosity decreased by 68% in 24 h. The VR composition showed a reduction in the contents of resins and asphaltenes from 49% to 17% from the initial state (S/A/R/A = 7.3%/43.7%/25.6%/23.5%) to the final state (S/A/R/A = 4.5%/63.5%/12.5%/20.0%), and the content of aromatics was maximized to 63.5%. The gas layer formed by the aquathermolysis reaction in the reactor chamber was collected and analyzed by GC-MS spectroscopy. As a result, various hydrocarbon compounds such as ethylbenzene, octane and dimethylbenzene were detected.

Viscosity Reduction by Catalytic Aquathermolysis Reaction of Vacuum Residues (접촉식 가수열분해 반응에 의한 감압잔사유의 점도 강하에 대한 연구)

  • Ko, Jin Young;Park, Seung-Kyu
    • Applied Chemistry for Engineering
    • /
    • v.29 no.4
    • /
    • pp.468-473
    • /
    • 2018
  • In this study, the reforming reaction of vacuum residues (VR), high viscosity oil residues produced from vacuum distillation process of petroleum oil, was carried out using catalytic aquathermolysis reaction. VR showed a prone to decrease the amount of resins and asphaltenes in the constituents, and to increase saturates and aromatics when reacting with steam at 30 bar and above $300^{\circ}C$ for 24 h. When the amount of steam is not enough at this reaction, the asphaltene content in the products was rather increased after the reaction. As a result of the catalytic aquathermolysis using the metal oxide-zeolite catalyst with the decaline as a hydrogen donor, a 10% decrease in resin and asphaltene as well as a 10% increase in the aromatic hydrocarbon were observed. Consequently, the viscosity of VR decreased by 70% after the reaction. GC-Mass spectroscopy showed that the aquathermolysis of VR resulted in the decomposition of the resins and asphaltens into a low molecular weight material.

Upgrading of Heavy Oil or Vacuum Residual Oil : Aquathermolysis and Demetallization (중질유 혹은 감압잔사유의 개질 반응 : Aquathermolysis와 Demetallization)

  • Lee, Hoo-Cheol;Park, Seung-Kyu
    • Applied Chemistry for Engineering
    • /
    • v.27 no.4
    • /
    • pp.343-352
    • /
    • 2016
  • It has been estimated that the Earth has nearly 1.688 trillion barrels of crude oil, which will last 53.3 years at current extraction rates. The organization of petroleum exporting countries (OPEC) group forecasted that the oil prices will not jump to triple-digit territory within a decade, but it can quickly increase as the political issue for reducing oil production appears. With the potential of serious shortage of conventional hydrocarbon resources, the heavy oil, one of unconventional hydrocarbon resources including oil sand and natural bitumen has attracted worldwide interest. The heavy oil contains heavy hydrocarbon compounds, commonly called as resins and asphaltenes, with long carbon chains more than sixty carbon atoms. The high content of heavier fraction corresponds with the high molecular weight, viscosity, and boiling point. Physicochemical properties of residues from vacuum distillation of conventional oil, referred to as vacuum residues (VR) were similar to those of heavy oil. For the development of heavy oil reserves, reducing the heavy oil viscosity is the most important. In this article, commercially employed aquathermolysis processes and their application to VR upgrading are discussed. VR contains transition metals such as Ni and V, but these metals should be eliminated in advance for further refining. Recent studies on demetallization technologies for VR are also reviewed.