DOI QR코드

DOI QR Code

Thermal stresses in a non-homogeneous orthotropic infinite cylinder

  • Edfawy, E. (Mathematics Department, Faculty of Science, Taif University)
  • Received : 2015.12.19
  • Accepted : 2016.04.15
  • Published : 2016.09.10

Abstract

The present paper is concerned with the investigation of propagation of thermoelastic media, the finite difference technique is used to obtain the solution for the uncoupled dynamic thermoelastic stress problem in a non-homogeneous orthrotropc thick cylindrical shell. In implementing the method, the linear dynamic thermoelasticity equations are used with the appropriate boundary and initial conditions. Thermal shock stress becomes of significant magnitude due to stress wave propagation which is initiated at the boundaries by sudden thermal loading. Numerical results have been given and illustrated graphically in each case considered. The presented results indicate that the effect of inhomogeneity is very pronounced.

Keywords

References

  1. Abd-Alla, A.M. and Abo-Dahab, S.M. (2009), "Time-harmonic sources in a generalized magneto-thermo viscoelastic continuum with and without energy dissipation", Appl. Math. Model., 33, 2388-2402. https://doi.org/10.1016/j.apm.2008.07.008
  2. Abd-Alla, A.M. and Mahmoud S.R. (2010), "Magneto-thermoelastic problem in rotating non-homogeneous orthotropic hollow cylinder under the hyperbolic heat conduction model", Meccanica, 45, 451-461. https://doi.org/10.1007/s11012-009-9261-8
  3. Abd-Alla, A.M., Abd-Alla, A.N. and Zeidan, N.A. (1999), "Transient thermal stresses in a rotating nonhomogeneous cylindrically orthotropic composite tubes", J. Appl. Math. Comput., 105, 253-269. https://doi.org/10.1016/S0096-3003(98)10104-2
  4. Abd-Alla, A.M., Abd-Alla, A.N. and Zeidan, N.A. (2003), "Thermal stresses in a non-homogeneous orthotropic elastic multilayered cylinder", J. Therm. Stress., 23, 413-428.
  5. Abd-Alla, A.M., Abo-Dahab, S.M. and Bayones, F.S. (2015), "Wave propagation in fibre-reinforced anisotropic thermoelastic medium subjected to gravity field", Struct. Eng. Mech., 53, 277-296. https://doi.org/10.12989/sem.2015.53.2.277
  6. Abd-Alla, A.M., Abo-Dahab, S.M. and Hammad, H.A.H. (2011), "Propagation of Rayleigh waves in generalized magneto-thermoelastic orthotropic material uunder initial stress and gravity field", Appl. Math. Model., 35, 2981-3000 . https://doi.org/10.1016/j.apm.2010.11.067
  7. Abd-Alla, A.M., El-Naggar, A.M. and Fahmy, M.A. (2003), "Thermal stresses in a rotating nonhomogeneous orthotropic hollow cylinder", Heat Mass Transf., 39, 625-629. https://doi.org/10.1007/s00231-002-0370-3
  8. Abd-El-Salam, M.R., Abd-Alla, A.M. and Hosham, H.A. (2007), "Numerical solution of magneto thermoelastic problem in non-homogeneous isotropic cylinder by the finite-difference method", Appl. Math. Model., 31, 1662-1670. https://doi.org/10.1016/j.apm.2006.05.009
  9. Ait Yahia, S., Ait Atmane, H., Houari, M.S.A. and Tounsi, A. (2015), "Wave propagation in functionally graded plates with porosities using various higher-order shear deformation plate theories", Struct. Eng. Mech., 53(6), 1143-1165. https://doi.org/10.12989/sem.2015.53.6.1143
  10. Bagri, A. and Eslami, M.R. (2007), "A unified generalized thermoelasticity; solution for cylinders and spheres", Int. J. Mech. Sci., 49, 1325-1335. https://doi.org/10.1016/j.ijmecsci.2007.04.004
  11. Bagri, A. and Eslami, M.R. (2008), "Generalized coupled thermoelasticity of functionally graded annular disk considering the Lord-Shulman theory", Compos. Struct., 83, 168-179. https://doi.org/10.1016/j.compstruct.2007.04.024
  12. Belabed, Z., Houari, M.S.A., Tounsi, A., Mahmoud, S.R. and Anwar Beg, O. (2014), "An efficient and simple higher order shear and normal deformation theory for functionally graded material (FGM) plates", Compos. Part B, 60, 274-283. https://doi.org/10.1016/j.compositesb.2013.12.057
  13. Bennoun, M., Houari, M.S.A. and Tounsi, A. (2016), "A novel five variable refined plate theory for vibration analysis of functionally graded sandwich plates", Mech. Adv. Mater. Struct., 23(4), 423-431. https://doi.org/10.1080/15376494.2014.984088
  14. Benselama, K., El Meiche, N., Bedia, E.A.A. and Tounsi, A. (2015), "Buckling analysis in hybrid cross-ply composite laminates on elastic foundation using the two variable refined plate theory", Struct. Eng. Mech., 55, 47-64. https://doi.org/10.12989/sem.2015.55.1.047
  15. Bouderba, B., Houari, M.S.A. and Tounsi, A. (2013), "Thermomechanical bending response of FGM thick plates resting on Winkler-Pasternak elastic foundations", Steel Compos. Struct., 14(1), 85-104. https://doi.org/10.12989/scs.2013.14.1.085
  16. Bourada, M., Kaci, A., Houari, M.S.A. and Tounsi, A. (2015), "A new simple shear and normal deformations theory for functionally graded beams", Steel Compos. Struct., 18(2), 409-423. https://doi.org/10.12989/scs.2015.18.2.409
  17. Bousahla, A.A., Houari, M.S.A., Tounsi, A. and Adda Bedia, E.A. (2014), "A novel higher order shear and normal deformation theory based on neutral surface position for bending analysis of advanced composite plates", Int. J. Comput. Meth., 11(6), 1350082. https://doi.org/10.1142/S0219876213500825
  18. Cho, H., Kardomateas, G.A. and Valle, C.S. (1998), "Elastodynamic solution for the thermal shock stresses in an orthotropic thick cylindrical shell", J. Appl. Mech., ASME, 65, 184-193. https://doi.org/10.1115/1.2789024
  19. Ding, D.J., Wang, H.M. and Chen, W.O. (2003), "A solutions of a non-homogeneous orthotropic cylindrical shell for axisymmetric plane strain dynamic thermoelastic problems", J. Sound Vib., 263, 815-829. https://doi.org/10.1016/S0022-460X(02)01075-1
  20. El-Naggar, A.M., Abd-Alla, A.M., Ahmed, S.M. and Fahmy, M.A. (2003), "Thermal stresses in a rotating non-homogeneous orthotropic hollow cylinder", Heat Mass Transf., 39, 41-46.
  21. Ezzat, M.A. and Youssef, H.M. (2005), "Generalized magneto-thermoelasticity in a perfectly conducting medium", Int. J. Solid. Struct., 42, 6319-633. https://doi.org/10.1016/j.ijsolstr.2005.03.065
  22. Haddow, J.B. and Mioduchowski, A. (1987), "Dynamic expansion of a compressible hyperelastic spherical shell", Acta Mechanica, 66, 205-216. https://doi.org/10.1007/BF01184294
  23. Hamidi, A., Houari, M.S.A., Mahmoud, S.R. and Tounsi, A. (2015), "A sinusoidal plate theory with 5-unknowns and stretching effect for thermomechanical bending of functionally graded sandwich plates", Steel Compos. Struct., 18(1), 235-253. https://doi.org/10.12989/scs.2015.18.1.235
  24. Hebali, H., Tounsi, A., Houari, M.S.A., Bessaim, A. and Adda Bedia, E.A. (2014), "A new quasi-3D hyperbolic shear deformation theory for the static and free vibration analysis of functionally graded plates", J. Eng. Mech., ASCE, 140, 374-383. https://doi.org/10.1061/(ASCE)EM.1943-7889.0000665
  25. Kumar, R. and Mukhopadhyay, S. (2010), "Effects of thermal relaxation time on plane wave propagation under two-temperature thermoelasticity", Int. J. Eng. Sci., 48, 128-139. https://doi.org/10.1016/j.ijengsci.2009.07.001
  26. Mahi, A., Adda Bedia, E.A. and Tounsi, A. (2015), "A new hyperbolic shear deformation theory for bending and free vibration analysis of isotropic, functionally graded, sandwich and laminated composite plates", Appl. Math. Model., 39, 2489-2508. https://doi.org/10.1016/j.apm.2014.10.045
  27. Marin, M. (1995), "On existence and uniqueness in thermoelasticity of micropolar bodies", Comput. Rendus, Acad. Sci. Paris, Serie II, 321, 475-480.
  28. Marin, M. (1999), "An evolutionary equation in thermoelasticity of dipolar bodies", J. Math. Phys., 40(3), 1391-1399. https://doi.org/10.1063/1.532809
  29. Marin, M. and Marinics, C. (1998), "Thermoelasticity of initially stressed bodies. Asymptotic equipartition of energies", Int. J. Eng. Sci., 36(1), 73-86. https://doi.org/10.1016/S0020-7225(97)00019-0
  30. Meziane, A.A. (2014), "An efficient and simple refined theory for buckling and free vibration of exponentially graded sandwich plates under various boundary conditions", J. Sandw. Struct. Mater., 16(3), 293-318. https://doi.org/10.1177/1099636214526852
  31. Othman, M.I.A. and Singh, B. (2007), "The effect of rotation on generalized micropolar thermoelasticity for a half-space under five theories", Int. J. Solid. Struct., 44, 2748-2762. https://doi.org/10.1016/j.ijsolstr.2006.08.016
  32. Prasad R., Kumar, R. and Mukhopadhyay, S. (2010), "Propagation of harmonic plane waves under thermoelasticity with dual-phase-lags", Int. J. Eng. Sci., 48, 2028-2043. https://doi.org/10.1016/j.ijengsci.2010.04.011
  33. Praveen, A. and Amit, S. (2015), "Disturbance due to internal heat source in thermoplastic solid using dual phase lag model", Struct. Eng. Mech., 56, 341-354. https://doi.org/10.12989/sem.2015.56.3.341
  34. Ray, C. and Majumdera, S. (2014), "Failure analysis of composite plates under static and dynamic loading", Struct. Eng. Mech., 52, 137-147. https://doi.org/10.12989/sem.2014.52.1.137
  35. Ren, J.H., Li, Y.S. and Wang, W. (2014), "A penny-shaped interfacial crack between piezoelectric layer and elastic half-space", Struct. Eng. Mech., 52, 1-17. https://doi.org/10.12989/sem.2014.52.1.001
  36. Sadd, M.H. (2005), Elasticity: theory, application, and numerics, Elsevier, Amsterdam.
  37. Tounsi, A., Houari, M.S.A., Benyoucef, S. and Adda Bedia, E.A. (2013), "A refined trigonometric shear deformation theory for thermoelastic bending of functionally graded sandwich plates", Aerosp. Sci. Tech., 24, 209-220. https://doi.org/10.1016/j.ast.2011.11.009
  38. Wang, X. (1995), "Thermal shock in a hollow cylinder caused by rapid arbitrary heating", J. Sound Vib., 183, 899-906. https://doi.org/10.1006/jsvi.1995.0294
  39. Zidi, M., Tounsi, A., Houari, M.S.A., Adda Bedia, E.A. and Anwar Beg, O. (2014), "Bending analysis of FGM plates under hygro-thermo-mechanical loading using a four variable refined plate theory", Aerosp. Sci. Tech., 34, 24-34. https://doi.org/10.1016/j.ast.2014.02.001

Cited by

  1. Study on dynamic characteristics of the temperature and stress field in induction and laser heating for the semi-infinite body 2018, https://doi.org/10.1080/01495739.2017.1403299
  2. Three-dimensional stresses analysis in rotating thin laminated composite cylindrical shells vol.22, pp.5, 2016, https://doi.org/10.12989/scs.2016.22.5.1193
  3. Thermoelastic response of a nonhomogeneous elliptic plate in the framework of fractional order theory vol.91, pp.7, 2016, https://doi.org/10.1007/s00419-021-01962-w