DOI QR코드

DOI QR Code

Long range incoherent seafloor reverberation model based on coupled normal mode method

연성모드법 기반의 원거리 비상관 해저면 잔향음 모델

  • 박중용 (서울대학교 조선해양공학과) ;
  • 추영민 (서울대학교 조선해양공학과/해양시스템공학연구소) ;
  • 이근화 (세종대학교 국방시스템공학과) ;
  • 성우제 (서울대학교 조선해양공학과/해양시스템공학연구소)
  • Received : 2016.03.12
  • Accepted : 2016.07.07
  • Published : 2016.07.31

Abstract

In this paper, the incoherent reverberation model based on coupled normal mode method is presented. In the range dependent environment, one way coupled normal mode method is used to calculate the pressure from a source to a scatterer patch and the pressure from a scatterer patch to a receiver. For the computational efficiency, the sound propagation from a source/receiver to the scatterer patch is assumed to occur only in the 2D plane where a source/receiver and scatterer patch are located. For the model verification, problems of the reverberation modeling workshop I and II sponsored by the US office of Naval Research are calculated and the results are compared with the incoherent reverberation model results based on the ray method.

본 논문에서는 연성 모드 기반의 양상태 비상관 잔향음 모델을 제안한다. 거리종속 환경에서 단방향 연성모드 기반의 음파전달모델을 사용하여 음원에서의 산란체에 도달하는 음압과 산란체에서 수신원에 도달하는 음압을 계산한다. 계산의 편의 상 각 산란체와 음원 또는 수신기 사이의 음파전달은 산란체와 음원 또는 수신기를 잇는 2차원 평면에서만 일어난다고 가정한다. 모델의 타당성을 검증하기 위해, 미 해군 잔향음 모델링 워크숍 I, II에 제시된 문제에 대해 계산하고, 그 결과를 음선 이론 기반의 비상관 잔향음 결과와 비교했다.

Keywords

References

  1. D. D. Ellis and J. R. Preston, "An initial model-data comparison of reverberation and clutter from a near-shore site in the Gulf of Mexico," in Proc. Mtgs. Acoust. 19, 070007-1-9 (2013).
  2. F. S. Henyey and D. Tang, "Reverberation clutter induced by nonlinear internal waves in shallow water," J. Acoust. Soc. Am. 134, EL289-EL293 (2013). https://doi.org/10.1121/1.4818937
  3. C. H. Harrison, "Closed-form expressions for ocean reverberation and signal excess with mode stripping and Lambert's law," J. Acoust. Soc. Am. 114, 2744-2756 (2003). https://doi.org/10.1121/1.1618240
  4. C. H. Harrison, "Closed form bistatic reverberation and target echoes with variable bathymetry and sound speed," IEEE J. Oceanic Eng. 30, 660-675 (2005). https://doi.org/10.1109/JOE.2005.862095
  5. R. E. Keenan, "An introduction to GRAB eigenrays and CASS reverberation and signal excess." in OCEANS 2000 MTS/IEEE Conference and Exhibition. 1065-1070, (2000).
  6. Y. M. Choo, W. J. Seong and W. Y. Hong, "Modeling and Analysis of Monostatic Seafloor Reverberation from Bottom Consisting of Two Slopes," J. Computational Acoust. 22, 1450005-1-15 (2014). https://doi.org/10.1142/S0218396X14500052
  7. K. H. Lee, Y. M. Chu and W. J. Seong, "Geometrical ray-bundle reverberation modeling," J. Computational Acoust. 21, 1350011-1-17 (2013). https://doi.org/10.1142/S0218396X13500112
  8. J. F. Lingevitch and K. D. LePage, "Parabolic equation simulations of reverberation statistics from non-Gaussian-distributed bottom roughness," IEEE J. Oceanic Eng. 35, 199-208 (2010). https://doi.org/10.1109/JOE.2010.2044054
  9. M. J. Isakson, B. Goldsberry, and N.P. Chotiros, "A three-dimensional, longitudinally-invariant finite element model for acoustic propagation in shallow water waveguides," J. Acoust. Soc. Am. 136, EL206-EL211 (2014). https://doi.org/10.1121/1.4890195
  10. H. P. Bucker and H. E. Morris, "Normal-Mode Reverberation in Channels or Ducts," J. Acoust. Soc. Am. 44, 827-828 (1968). https://doi.org/10.1121/1.1911187
  11. R. Zhang and G. Jin, "Normal-mode theory of average reverberation intensity in shallow water," J. Sound Vib. 119, 215-223 (1987). https://doi.org/10.1016/0022-460X(87)90450-0
  12. D. D. Ellis, "A Shallow-Water Normal-Mode Reverberation Model," J. Acoust. Soc. Am. 97, 2804-2814 (1995). https://doi.org/10.1121/1.411910
  13. J. R. Preston and D. D. Ellis, "Report on a normal mode and Matlab based reverberation model," DRDC Atlantic TM 2006-290, 2008.
  14. S. T. Oh, S. H. Cho, D. H. Kang and K. J. Park, "Low-frequency normal mode reverberation model" (in Korean), J. Acoust. Soc. Kr. 34, 184-191 (2015). https://doi.org/10.7776/ASK.2015.34.3.184
  15. J. R. Preston and D. D. Ellis, "A Matlab and normal mode based adiabatic range-dependent reverberation model," in 4th International Conference and Exhibition on UAM: Technologies & Results, 667-674 (2011).
  16. K. D. LePage, "Bistatic reverberation modeling for range-dependent waveguides," J. Acoust. Soc. Am. 112, 2253-2254 (2002).
  17. R. B. Evans, "A coupled mode solution for acoustic propagation in a waveguide with stepwise depth variations of a penetrable bottom," J. Acoust. Soc. Am. 74, 188-195 (1983). https://doi.org/10.1121/1.389707
  18. M. B. Porter, F. B. Jensen and C. M. Ferla, "The problem of energy conservation in one-way models," J. Acoust. Soc. Am. 89, 1058-1067 (1991). https://doi.org/10.1121/1.400525
  19. J. S. Perkins and E. I. Thorsos, "Overview of the reverberation modeling workshops," J. Acoust. Soc. Am. 122, 3074-3074 (2007).