DOI QR코드

DOI QR Code

LAMP-3 (Lysosome-Associated Membrane Protein 3) Promotes the Intracellular Proliferation of Salmonella typhimurium

  • Lee, Eun-Ju (Department of Biochemistry, College of Medicine, Chungbuk National University) ;
  • Park, Kwan-Sik (Department of Biochemistry, College of Medicine, Chungbuk National University) ;
  • Jeon, In-Sook (Department of Biochemistry, College of Medicine, Chungbuk National University) ;
  • Cho, Jae-Woon (Department of Surgery, College of Medicine, Chungbuk National University) ;
  • Lee, Sang-Jeon (Department of Surgery, College of Medicine, Chungbuk National University) ;
  • Choy, Hyun E. (Department of Microbiology, Chonnam National University Medical School) ;
  • Song, Ki-Duk (Department of Animal Biotechnology, Chonbuk National University) ;
  • Lee, Hak-Kyo (Department of Animal Biotechnology, Chonbuk National University) ;
  • Choi, Joong-Kook (Department of Biochemistry, College of Medicine, Chungbuk National University)
  • Received : 2016.04.26
  • Accepted : 2016.05.11
  • Published : 2016.07.31

Abstract

Lysosomes are cellular organelles containing diverse classes of catabolic enzymes that are implicated in diverse cellular processes including phagocytosis, autophagy, lipid transport, and aging. Lysosome-associated membrane proteins (LAMP-1 and LAMP-2) are major glycoproteins important for maintaining lysosomal integrity, pH, and catabolism. LAMP-1 and LAMP-2 are constitutively expressed in Salmonella-infected cells and are recruited to Salmonella-containing vacuoles (SCVs) as well as Salmonella- induced filaments (Sifs) that promote the survival and proliferation of the Salmonella. LAMP-3, also known as DC-LAMP/CD208, is a member of the LAMP family of proteins, but its role during Salmonella infection remains unclear. DNA microarray analysis identified LAMP-3 as one of the genes responding to LPS stimulation in THP-1 macrophage cells. Subsequent analyses reveal that LPS and Salmonella induced the expression of LAMP-3 at both the transcriptional and translational levels. Confocal Super resolution N-SIM imaging revealed that LAMP-3, like LAMP-2, shifts its localization from the cell surface to alongside Salmonella. Knockdown of LAMP-3 by specific siRNAs decreased the number of Salmonella recovered from the infected cells. Therefore, we conclude that LAMP-3 is induced by Salmonella infection and recruited to the Salmonella pathogen for intracellular proliferation.

Keywords

References

  1. Agarwal, A.K., Srinivasan, N., Godbole, R., More, S.K., Budnar, S., Gude, R.P., and Kalraiya, R.D. (2015). Role of tumor cell surface lysosome-associated membrane protein-1(LAMP1) and its associated carbohydrates in lung metastasis. J. Cancer Res. Clin. Oncol. 141, 1563-1574. https://doi.org/10.1007/s00432-015-1917-2
  2. Andrejewski, N., Punnonen, E.L., Guhde, G., Tanaka, Y., Lullmann-Rauch, R., Hartmann, D., von Figura, K., and Saftig, P. (1999). Normal lysosomal morphology and function in LAMP-1-deficient mice. J. Biol. Chem. 274, 12692-12701. https://doi.org/10.1074/jbc.274.18.12692
  3. Angus, A.A., Lee, A.A., Augustin, D.K., Lee, E.J., Evans, D.J., and Fleiszig, S.M. (2008). Pseudomonas aeruginosa induces membrane blebs in epithelial cells, which are utilized as a niche for intracellular replication and motility. Infect. Immun. 76, 1992-2001. https://doi.org/10.1128/IAI.01221-07
  4. Appelqvist, H., Waster, P., Kagedal, K., and Ollinger, K. (2013). The lysosome: from waste bag to potential therapeutic target. J. Mol. Cell Biol. 5, 214-226. https://doi.org/10.1093/jmcb/mjt022
  5. Arpaia, N., Godec, J., Lau, L., Sivick, K.E., McLaughlin, L.M., Jones, M.B., Dracheva, T., Peterson, S.N., Monack, D.M., and Barton, G.M. (2011). TLR signaling is required for Salmonella typhimurium virulence. Cell 144, 675-688. https://doi.org/10.1016/j.cell.2011.01.031
  6. Bakowski, M.A., Braun, V., and Brumell, J.H. (2008). Salmonellacontaining vacuoles: directing traffic and nesting to grow. Traffic 9, 2022-2031. https://doi.org/10.1111/j.1600-0854.2008.00827.x
  7. Baldeon, M.E., Ceresa, B.P., and Casanova, J.E. (2001). Expression of constitutively active Rab5 uncouples maturation of the Salmonella-containing vacuole from intracellular replication. Cell. Microbiol. 3, 473-486. https://doi.org/10.1046/j.1462-5822.2001.00130.x
  8. Barois, N., de Saint-Vis, B., Lebecque, S., Geuze, H.J., and Kleijmeer, M.J. (2002). MHC class II compartments in human dendritic cells undergo profound structural changes upon activation. Traffic 3, 894-905. https://doi.org/10.1034/j.1600-0854.2002.31205.x
  9. Bechetoille, N., Andre, V., Valladeau, J., Perrier, E., and Dezutter-Dambuyant, C. (2006). Mixed Langerhans cell and interstitial/dermal dendritic cell subsets emanating from monocytes in Th2-mediated inflammatory conditions respond differently to proinflammatory stimuli. J. Leukocyte Biol. 80, 45-58. https://doi.org/10.1189/jlb.0205109
  10. Beuzon, C.R., Salcedo, S.P., and Holden, D.W. (2002). Growth and killing of a Salmonella enterica serovar Typhimurium sifA mutant strain in the cytosol of different host cell lines. Microbiology 148, 2705-2715. https://doi.org/10.1099/00221287-148-9-2705
  11. Birmingham, C.L., Smith, A.C., Bakowski, M.A., Yoshimori, T., and Brumell, J.H. (2006). Autophagy controls Salmonella infection in response to damage to the Salmonella-containing vacuole. J. Biol. Chem. 281, 11374-11383. https://doi.org/10.1074/jbc.M509157200
  12. Castillo, E.F., Dekonenko, A., Arko-Mensah, J., Mandell, M.A., Dupont, N., Jiang, S., Delgado-Vargas, M., Timmins, G.S., Bhattacharya, D., Yang, H., et al. (2012). Autophagy protects against active tuberculosis by suppressing bacterial burden and inflammation. Proc. Natl. Acad. Sci. USA 109, E3168-3176. https://doi.org/10.1073/pnas.1210500109
  13. Chakravortty, D., Hansen-Wester, I., and Hensel, M. (2002). Salmonella pathogenicity island 2 mediates protection of intracellular Salmonella from reactive nitrogen intermediates. J. Exp. Med. 195, 1155-1166. https://doi.org/10.1084/jem.20011547
  14. Coburn, B., Grassl, G.A., and Finlay, B.B. (2007). Salmonella, the host and disease: a brief review. Immunol. Cell Biol. 85, 112-118. https://doi.org/10.1038/sj.icb.7100007
  15. Cox, T.M., and Cachon-Gonzalez, M.B. (2012). The cellular pathology of lysosomal diseases. J. Pathol. 226, 241-254. https://doi.org/10.1002/path.3021
  16. De Saint-Vis, B., Vincent, J., Vandenabeele, S., Vanbervliet, B., Pin, J.J., Ait-Yahia, S., Patel, S., Mattei, M.G., Banchereau, J., Zurawski, S., et al. (1998). A novel lysosome-associated membrane glycoprotein, DC-LAMP, induced upon DC maturation, is transiently expressed in MHC class II compartment. Immunity 9, 325-336. https://doi.org/10.1016/S1074-7613(00)80615-9
  17. Dominguez-Bautista, J.A., Klinkenberg, M., Brehm, N., Subramaniam, M., Kern, B., Roeper, J., Auburger, G., and Jendrach, M. (2015). Loss of lysosome-associated membrane protein 3 (LAMP3) enhances cellular vulnerability against proteasomal inhibition. Eur. J. Cell Biol. 94, 148-161. https://doi.org/10.1016/j.ejcb.2015.01.003
  18. Eskelinen, E.L. (2006). Roles of LAMP-1 and LAMP-2 in lysosome biogenesis and autophagy. Mol. Aspects Med. 27, 495-502. https://doi.org/10.1016/j.mam.2006.08.005
  19. Eskelinen, E.L., and Saftig, P. (2009). Autophagy: a lysosomal degradation pathway with a central role in health and disease. Biochim. Biophys. Acta 1793, 664-673. https://doi.org/10.1016/j.bbamcr.2008.07.014
  20. Fabrega, A., and Vila, J. (2013). Salmonella enterica serovar Typhimurium skills to succeed in the host: virulence and regulation. Clin. Microbiol. Rev. 26, 308-341. https://doi.org/10.1128/CMR.00066-12
  21. Furuta, K., Yang, X.L., Chen, J.S., Hamilton, S.R., and August, J.T. (1999). Differential expression of the lysosome-associated membrane proteins in normal human tissues. Arch. Biochem. Biophysics 365, 75-82. https://doi.org/10.1006/abbi.1999.1147
  22. Guha, M., and Mackman, N. (2002). The phosphatidylinositol 3-kinase-Akt pathway limits lipopolysaccharide activation of signaling pathways and expression of inflammatory mediators in human monocytic cells. J. Biol. Chem. 277, 32124-32132. https://doi.org/10.1074/jbc.M203298200
  23. Holness, C.L., and Simmons, D.L. (1993). Molecular cloning of CD68, a human macrophage marker related to lysosomal glycoproteins. Blood 81, 1607-1613.
  24. Jo, E.K., Yuk, J.M., Shin, D.M., and Sasakawa, C. (2013). Roles of autophagy in elimination of intracellular bacterial pathogens. Front. Immunol. 4, 97.
  25. Kanao, H., Enomoto, T., Kimura, T., Fujita, M., Nakashima, R., Ueda, Y., Ueno, Y., Miyatake, T., Yoshizaki, T., Buzard, G.S., et al. (2005). Overexpression of LAMP3/TSC403/DC-LAMP promotes metastasis in uterine cervical cancer. Cancer Res. 65, 8640-8645. https://doi.org/10.1158/0008-5472.CAN-04-4112
  26. Kleijmeer, M., Ramm, G., Schuurhuis, D., Griffith, J., Rescigno, M., Ricciardi-Castagnoli, P., Rudensky, A.Y., Ossendorp, F., Melief, C.J., Stoorvogel, W., et al. (2001). Reorganization of multivesicular bodies regulates MHC class II antigen presentation by dendritic cells. J. Cell Biol. 155, 53-63. https://doi.org/10.1083/jcb.200103071
  27. Knodler, L.A., and Celli, J. (2011). Eating the strangers within: host control of intracellular bacteria via xenophagy. Cell. Microbiol. 13, 1319-1327. https://doi.org/10.1111/j.1462-5822.2011.01632.x
  28. Levine, B., and Deretic, V. (2007). Unveiling the roles of autophagy in innate and adaptive immunity. Nat. Rev. Immunol. 7, 767-777. https://doi.org/10.1038/nri2161
  29. Liao, X., Chen, Y., Liu, D., Li, F., Li, X., and Jia, W. (2015). High expression of LAMP3 is a novel biomarker of poor prognosis in patients with esophageal squamous cell carcinoma. Int. J. Mol. Sci. 16, 17655-17667. https://doi.org/10.3390/ijms160817655
  30. Mujcic, H., Rzymski, T., Rouschop, K.M., Koritzinsky, M., Milani, M., Harris, A.L., and Wouters, B.G. (2009). Hypoxic activation of the unfolded protein response (UPR) induces expression of the metastasis-associated gene LAMP3. Radiother. Oncol. 92, 450-459. https://doi.org/10.1016/j.radonc.2009.08.017
  31. Nagelkerke, A., Mujcic, H., Bussink, J., Wouters, B.G., van Laarhoven, H.W., Sweep, F.C., and Span, P.N. (2011). Hypoxic regulation and prognostic value of LAMP3 expression in breast cancer. Cancer 117, 3670-3681. https://doi.org/10.1002/cncr.25938
  32. Nagelkerke, A., Bussink, J., Mujcic, H., Wouters, B.G., Lehmann, S., Sweep, F.C., and Span, P.N. (2013). Hypoxia stimulates migration of breast cancer cells via the PERK/ATF4/LAMP3-arm of the unfolded protein response. Breast Cancer Res. 15, R2. https://doi.org/10.1186/bcr3373
  33. Nagelkerke, A., Sieuwerts, A.M., Bussink, J., Sweep, F.C., Look, M.P., Foekens, J.A., Martens, J.W., and Span, P.N. (2014). LAMP3 is involved in tamoxifen resistance in breast cancer cells through the modulation of autophagy. Endocr. Relat. Cancer 21, 101-112. https://doi.org/10.1530/ERC-13-0183
  34. Nishino, I., Fu, J., Tanji, K., Yamada, T., Shimojo, S., Koori, T., Mora, M., Riggs, J.E., Oh, S.J., Koga, Y., et al. (2000). Primary LAMP-2 deficiency causes X-linked vacuolar cardiomyopathy and myopathy (Danon disease). Nature 406, 906-910. https://doi.org/10.1038/35022604
  35. Roark, E.A., and Haldar, K. (2008). Effects of lysosomal membrane protein depletion on the Salmonella-containing vacuole. PLoS One 3, e3538. https://doi.org/10.1371/journal.pone.0003538
  36. Ryter, S.W., Cloonan, S.M., and Choi, A.M. (2013). Autophagy: a critical regulator of cellular metabolism and homeostasis. Mol. Cells 36, 7-16. https://doi.org/10.1007/s10059-013-0140-8
  37. Saha, T. (2012). LAMP2A overexpression in breast tumors promotes cancer cell survival via chaperone-mediated autophagy. Autophagy 8, 1643-1656. https://doi.org/10.4161/auto.21654
  38. Schmidt, H., and Hensel, M. (2004). Pathogenicity islands in bacterial pathogenesis. Clin. Microbiol. Rev. 17, 14-56. https://doi.org/10.1128/CMR.17.1.14-56.2004
  39. Shroff A, Ayyar K, Saha D, Reddy KVR. (2014). Host autophagy response: friend or foe in reproductive tract infections. SOJ Microbiol. Infect Dis. 2, 1-9.
  40. Vazquez-Torres, A., Xu, Y., Jones-Carson, J., Holden, D.W., Lucia, S.M., Dinauer, M.C., Mastroeni, P., and Fang, F.C. (2000). Salmonella pathogenicity island 2-dependent evasion of the phagocyte NADPH oxidase. Science 287, 1655-1658. https://doi.org/10.1126/science.287.5458.1655
  41. Wileman, T. (2013). Autophagy as a defence against intracellular pathogens. Essays Biochem. 55, 153-163. https://doi.org/10.1042/bse0550153
  42. Wilke, S., Krausze, J., and Bussow, K. (2012). Crystal structure of the conserved domain of the DC lysosomal associated membrane protein: implications for the lysosomal glycocalyx. BMC Biol. 10, 62. https://doi.org/10.1186/1741-7007-10-62
  43. Zhou, Z., Xue, Q., Wan, Y., Yang, Y., Wang, J., and Hung, T. (2011). Lysosome-associated membrane glycoprotein 3 is involved in influenza A virus replication in human lung epithelial (A549) cells. Virology J. 8, 384. https://doi.org/10.1186/1743-422X-8-384

Cited by

  1. Implications of aging and the endoplasmic reticulum unfolded protein response on the molecular modality of breast cancer vol.49, pp.11, 2017, https://doi.org/10.1038/emm.2017.215
  2. Daratumumab induces CD38 internalization and impairs myeloma cell adhesion vol.7, pp.10, 2018, https://doi.org/10.1080/2162402X.2018.1486948
  3. Engineering of a rough auxotrophic mutant Salmonella Typhimurium for effective delivery vol.9, pp.39, 2016, https://doi.org/10.18632/oncotarget.25192
  4. Transcriptional profiling of human macrophages during infection with Bordetella pertussis vol.17, pp.5, 2016, https://doi.org/10.1080/15476286.2020.1727694
  5. The gene for the lysosomal protein LAMP3 is a direct target of the transcription factor ATF4 vol.295, pp.21, 2016, https://doi.org/10.1074/jbc.ra119.011864