DOI QR코드

DOI QR Code

Numerical study of dividing open-channel flows at bifurcation channel using TELEMAC-2D

TELEMAC-2D모형을 이용한 개수로 분류흐름에 대한 수치모의 연구

  • Jung, Dae Jin (Chungnam Regional Headquarters of KRC) ;
  • Jang, Chang-Lae (Dept. of Civil Engineering Korea National University of Transportation) ;
  • Jung, Kwansue (Dept. of Civil Engineering Chungnam National University)
  • 정대진 (한국농어촌공사 충남지역본부) ;
  • 장창래 (한국교통대학교 토목공학과) ;
  • 정관수 (충남대학교 토목공학과)
  • Received : 2016.03.21
  • Accepted : 2016.06.25
  • Published : 2016.07.30

Abstract

This study investigates variation of flow characteristics due to variation of branch channel width and discharge ratio at bifurcation channel using 2D numerical model. The calculated result considering secondary flow is more accurate and stable than without considering one. The diversion flow rate ($Q_3/Q_1$) is reduced by flow stagnation effect according to the interaction of the secondary flow and flow separation zone in branch channel. The less upstream inflow or the lower upstream velocity, the bigger variation of diversion flow rate by changing branch channel width. At uniform downstream boundary condition, the rate of change in Froude number of downstream of main channel($Fr_2$)-diversion flow rate ($Q_3/Q_1$) relations is similar about -2.4843~-2.6675 when branch channel width ratio (b/B) is decreased. At uniform diversion flow rate ($Q_3/Q_1$) condition, the width of recirculation zone in branch channel is decreased when branch channel width ratio (b/B) is decreased. The less upstream inflow in the case of increasing branch channel width or the narrower branch channel width in the case of increasing upstream inflow, the bigger reduction ratio of recirculation zone width. At uniform inflow discharge ($Q_1$) condition, diversion flow rate, the width and length of recirculation zone in branch channel are decreased when branch channel width ratio (b/B) is decreased.

본 연구에서는 2차원 수치모형을 이용하여 개수로 분류부에서 분류수로 폭과 유량비 변화에 따른 흐름특성을 파악하였다. 2차류 영향을 고려한 분류부 수치모의시 흐름분포를 실험결과에 더 정확하고 안정하게 모의가능하다. 분류수로내 통수능을 감소시키는 흐름분리구역과 2차류의 상호 작용에 의한 흐름정체 효과는 분류유량비를 감소시킨다. 분류부 상류 유입유량과 유속이 감소할수록 수로폭 변화에 따른 분류유량비 변화가 더 크다. 동일 하류단 경계조건에서 분류수로 폭을 감소시킬 때, 본류 하류부 프루우드 수-분류유량비 관계식의 변화율은 -2.4843~-2.6675로 유사하게 나타난다. 동일 분류유량비 조건에서 분류수로 폭이 감소할수록 수축계수는 증가하고, 흐름분리구역의 폭은 감소한다. 분류수로 폭을 증가시킬 경우 분류부 상류 유입유량이 적을수록, 그리고 분류부 상류 유입량을 증가시킬 경우 분류수로 폭이 좁을수록 흐름분리구역 폭 감소율이 더 크다. 동일 상류 유입유량 조건에서 분류수로 폭이 감소할수록 분류유량비, 흐름분리구역의 길이와 폭은 감소한다.

Keywords

References

  1. Ata, R., Pavan, S., Khelladi, S., and Toro, E.F. (2013). "A Weighted Average Flux (WAF) scheme applied to shallow water equations for real-life applications." Advances in Water Resources, Vol. 62, pp. 155-172. https://doi.org/10.1016/j.advwatres.2013.09.019
  2. Atarodi, A., Hedayat, N., Tavana, M.H., and Panahian, A. (2014). "The Consequences of varying the Width Ratio Parameter of the Lateral Water Intake Structure to the Main Canal." Bull. Env. Pharmacol. Life Sci., Vol. 3, No. 4, pp. 48-54.
  3. Barkdoll, B.D., Hagen, B.L., and Odgaard, A.J. (1998). "Experimental Comparison of Dividing Open Channel with Duct Flow in T-junction." Journal of Hydraulic Eng., Vol. 124, No. 1, pp. 92-95. https://doi.org/10.1061/(ASCE)0733-9429(1998)124:1(92)
  4. Bernard, R., and Schneider, M. (1992). Depth-averaged numerical modeling for curved channels, Technical report HL-92-9, US Army Corps.
  5. Chen, H.B., and Lian, G.S. (1992). "The Numerical Computation of Turbulent Flow in T-junction." Journal of Hydrodynamics, No. 3, pp. 50-58.
  6. Hsu, C.C., Tang, C.J., Lee, W.J., and Shieh, M.Y. (2002). "Subcritical $90^{\circ}$ Equal-Width Open-Channel Dividing Flow." Journal of Hydraulic Eng., Vol. 128, No. 7, pp. 716-720. https://doi.org/10.1061/(ASCE)0733-9429(2002)128:7(716)
  7. Hervouet (2015). Telemac version 7.0, release notes. EDF.
  8. Kasthuri, B., and Pundarikanthan, N.V. (1987). "Discussion on Separation Zone at Open Channel Junction." Journal of Hydraulic Eng., Vol. 113, No. 4, pp. 543-548. https://doi.org/10.1061/(ASCE)0733-9429(1987)113:4(543)
  9. Korea Rural Community Corporation (KRC) (2006). Study of water right rearrangement for efficiency use and distribution of agriculture water, KRC.
  10. Litrico, X., and Fromion, V. (2009). Modeling and control of hydrosystems, Springer-Verlag London.
  11. Myong, H.K. (2012). Computational Fluid Dynamics, Munundang, Korea.
  12. Neary, V.S., and Odgaard, A. (1993). "Three Dimensional Flow Structure at Open-Channel Diversions." Journal of Hydraulic Engineering, Vol. 119, No. 11, pp. 1223-1230. https://doi.org/10.1061/(ASCE)0733-9429(1993)119:11(1223)
  13. Neary, V.S., and Sotiropoulos, F. (1996). "Numerical Investigation of Laminar Flows through 90-Degree Diversions of Rectangular Cross-Section." Computers & Fluids, Vol. 25, No. 2, pp. 95-118. https://doi.org/10.1016/0045-7930(95)00030-5
  14. Ramamurthy, A.S., Junying, Qu., and Diep, V. (2007). "Numerical and Experimental Study of Dividing Open-Channels Flows." Journal of Hydraulic Engineering, Vol. 133, No. 10, pp. 1135-1144. https://doi.org/10.1061/(ASCE)0733-9429(2007)133:10(1135)
  15. Ramarnurthy, A., and Satish, M. (1988). "Division of Flow in Short Open Channel Branches." Journal of Hydraulic Engineering, Vol. 114, No. 4, pp. 428-438. https://doi.org/10.1061/(ASCE)0733-9429(1988)114:4(428)
  16. Rao, N.L., and Sridharan, K. (1967). "Division of Flow in Open Channels." Water and Energy International, Vol. 24, No. 4, pp. 393-407.
  17. Shettar, A.S., and Murthy, K.K. (1996). "A Numerical Study of Division of Flow in Open Channels." Journal of Hydraulic Research, Vol. 34, No. 5, pp. 651-675. https://doi.org/10.1080/00221689609498464
  18. Vasquez, J.A. (2005). Two-Dimensional Numerical Simulation of Flow Diversions, 17th Canadian Hydrotechnical Conference.
  19. Woo, H.S. (2001). River Hydraulics, Cheongmoongak, Korea.