DOI QR코드

DOI QR Code

트랩식물과 침투이행성 살충제를 이용한 토마토 담배가루이 성충 방제효과

Control of Bemisia tabaci Genn. (Hemiptera: Aleyrodidae) Adults on Tomato Plants using Trap Plants with Systemic Insecticide

  • 최용석 (충청남도농업기술원 농업환경과) ;
  • 황인수 (충청남도농업기술원 농업환경과) ;
  • 이경주 (충청남도농업기술원 농업환경과) ;
  • 김경재 (충청남도농업기술원 과채연구소)
  • Choi, Yong-Seok (Bioenvironmental Division, Chungcheongnam-do Agricultural Research & Extension Services) ;
  • Hwang, In-Su (Bioenvironmental Division, Chungcheongnam-do Agricultural Research & Extension Services) ;
  • Lee, Gyung-Joo (Bioenvironmental Division, Chungcheongnam-do Agricultural Research & Extension Services) ;
  • Kim, Gyung-Je (Fruit Vegetables Research Institute, Chungcheongnam-do Agricultural Research & Extension Services)
  • 투고 : 2016.02.14
  • 심사 : 2016.04.04
  • 발행 : 2016.06.01

초록

우리는 시설토마토에서 4가지 침투이행성약제가 사용된 가지를 트랩식물로 활용하여 담배가루이 성충의 방제효과를 조사하였다. 침투이행성약제가 추천된 농도로 사용되었을 때, 담배가루이 성충에 대한 dinotefuran SG 50% 방제효과는 80%로 방제효과가 각각 51.0%, 12.4%, 11.0%인 cyantraniliprole, pyridaben, clothianidin 보다 높았다. 살충효과가 뛰어난 dinotefuran을 농도별로 처리하였을 때, 200 ppm에서 살충률이 88.4%로 가장 효과적이었다. Dinotefuran의 방제효과는 가지에 적용된 약 9일까지 지속되었고 그 이후 담배가루이 밀도는 증가하였다. 포장실험에서 가지 트랩식물로부터 0, 15, 20 m 떨어진 토마토 신초에서의 담배가루이 밀도가 가장 높았고 5 m와 10 m에서 가장 낮았다. 담배가루이의 밀도가 낮고 dinotefuran SG 50%가 처리된 가지를 10 m 간격으로 투입했을 때, 담배가루이 성충의 밀도가 전체적으로 낮았으며, 또한 담배가루이의 밀도는 하우스 내부보다는 측면에서 밀도가 더 높았고 가지로부터 멀리 떨어진 곳에서 밀도가 높았다. 담배가루이 밀도가 높고 dinotefuran SG 50%가 처리된 가지를 5 m간격으로 투입했을 때, 담배가루이 밀도가 낮아졌다. 이러한 결과로 볼 때 가지는 시설토마토 재배시 담배가루이 성충을 유인하는데 효과적인 트랩식물이며 dinotefuran SG 50% 과 함께 사용한다면 담배가루이 밀도를 효과적으로 감소시킬 수 있을 것이다.

We investigated the control of Bemisia tabaci adults in tomato greenhouses using the eggplant as a trap plant with 4 systemic chemicals. The control effect of dinotefuran SG 50% on tobacco whitefly adults was 80% mortality, the highest than that cyantraniliprole, pyridaben and clothianidin, 51.0%, 12.4% and 11.0% respectively when all chemicals with recommended doses were used. Dinotefuran was applied at various doses and was observed to be most effective above 200ppm (88.4%)t. The control effect of dinotefuran lasted for appromimately nine 9 days and the density of tobacco whitefly adults increased there after. In field tests, the densities of tobacco whitefly adults on tomato shoots were highest at points 0, 15 and 20 m from the eggplant traps and lowest at 5 and 10 m. When the density of tobacco whitefly was low and the eggplants with dinotefuran SG 50% were placed in the tomato greenhouse at 10 m intervals, the overall density of tobacco whitefly adults was lower. In addition, densities were higher at the side of the greenhouse than in the interior and further away from the eggplant. When the density of tobacco whitefly was high and the eggplants with dinotefuran were placed at 5 m intervals, the density of tobacco whitefly at each 5 m point decreased. Theses results confirm that the eggplant is an effective trap plant for attracting tobacco whitefly audlts and combined with dinotefuran SG 50% decreases the density of tobacco whitefly in tomato greenhouses.

키워드

참고문헌

  1. Al-Hitty, A. and Sharif, H.L. 1987. Studies on host plant preference of Bemisia tabaci (Genn.) on some crops and effect of using host trap on the spread of tomato yellow leaf curl virus to tomato in the plastic house. Arab. J. Plant Prot. 5, 19-23.
  2. Al-Musa, A. 1982. Incidence, economic importance, and control of tomato yellow leaf curl in Jordan. Plant Dis. 66, 561-563. https://doi.org/10.1094/PD-66-561
  3. Bae, C.H., Cho, K.W., Kim, Y.S., Park, H.J., Shin, K.S., Park, Y.K., Lee, K.S. 2013. Honeybee toxicity by residues on tomato foliage of systemic insecticides applied to the soil. Kor. J. Pes. Sci. 17, 178-184.
  4. Bedford, I.D., Briddon, R.W., Brown, J.K., Rosell, R.C., Markham, R.G., 1994. Geminivirus transmission and biological characterisation of Bemisia tabaci (Gennadius) from different geographic regions. Ann. Appl. Biol. 125, 311-325. https://doi.org/10.1111/j.1744-7348.1994.tb04972.x
  5. Berlinger, J.M., Lebiush-Mordecchi, S., Dahan, R., Taylor, R.A.J. 1996. A rapid method for screening insecticides in the laboratory. Pestic. Sci. 46, 345-354. https://doi.org/10.1002/(SICI)1096-9063(199604)46:4<345::AID-PS363>3.0.CO;2-#
  6. Blua, M.J., Toscano, N. 1994. Bemisia argentifolii (Homoptera: Aleyrodidae) development and honeydew production as an function of cotton nirtogen status. Environ. Entomol. 23, 317-321.
  7. Brown, J.K., Frohilch, D.R., Rosell, R.C. 1995. The sweetpotato/silverleaf whiteflies: Biotypes of Bemisia tabaci genn, or a species complex? Ann. Rev. Entomol. 40, 511-534. https://doi.org/10.1146/annurev.en.40.010195.002455
  8. Choi, G.M., Lee, E.H., Choi, B.R., Park, H.M., Park, H.M., Ahn, Y.J. 2003. Toxicity of plant essential oils to Trialeurodes vaporariorum (Homoptera: Aleyrodidae). J. Econ. Entomol. 96, 1487-1497.
  9. Choi, Y.S., Seo, J.H., Whang, I.S., Kim, G.J., Choi, B.R. 2015. Effects of egg-plant as a trap plant attracting Bemisia tabaci Genn. (Hemiptera: Aleyrodidae) adults available on tomato greenhouses. Kor. J. Appl. Entomol. In press.
  10. Chung, B.K., Lee, H.S., Kim, Y.B. 2013. Establishment of 60 mesh nets to reduce crop loss by Bemisia tabaci (Gennadius) (Homoptera: Aleyrodidae) in tomato greenhouse. Kor. J. Appl. Entomol. 52, 23-27. https://doi.org/10.5656/KSAE.2013.01.1.082
  11. Cohen, S., Berlinger, M.J. 1986. Transmission and cultural control of whitefly-borne viruses. Agric. Ecosyst. Environ. 17, 89-97. https://doi.org/10.1016/0167-8809(86)90030-7
  12. Cordova, D., Benner, E.A., Sacher, M.D., Raul, J.J., Sopa, J.S., Lahm, G.P., Selby, T.P., Stevenson, T.M., Flexner, L., Gutteridge, S., Rhoades, D.F., Wu, L., Smith, R.M., Tao, Y. 2006. Anthranilic diamides: A new class of insecticides with a novel mode of action, ryanodine receptor activation. Pesiticide Biochem. and Physiol. 84, 196-214. https://doi.org/10.1016/j.pestbp.2005.07.005
  13. Devine, G.J., Denholm, I. 1998. An unconventional use of piperonyl butoxide of managing the cotton whitefly, Bemisia tabaci (Hemiptera: Aleyrodidae). Bull. Entomol. Res. 88, 601-610. https://doi.org/10.1017/S0007485300054262
  14. EPPO. 2004. Diagnostic protocols for regulated pests. Bemisia tabaci. EPPO Bulletin 34, 281-288.
  15. Gorden, P.L., McEwen, F.L. 1984. Insecticide-stimulated reproduction of Myzus persicae, the greenpeach aphid (Homoptera: Aphididae). Can. Entomol. 116, 783-784. https://doi.org/10.4039/Ent116783-5
  16. Hokkanen, H.M.T. 1991. Trap cropping in pest management. Annu. Rev. Entomol. 36, 119-138. https://doi.org/10.1146/annurev.en.36.010191.001003
  17. Isman, M.B. 2006. Botanical insecticides, deterrents, and repellents in modern agriculture and an increasingly regulated world. Ann. Rev. Entomol. 51, 45-66. https://doi.org/10.1146/annurev.ento.51.110104.151146
  18. Jaconson, A.L., Kennedy, G.G. 2011. The effect of three rates of cyantraniliprole on the transmission of tomato spotted wilt virus by Frankliniella occidentalis and Frankliniella fusca (Thysanoptera: Thripidae) to Capsicum annuum. Crop Protect. 30, 512-515. https://doi.org/10.1016/j.cropro.2010.12.004
  19. KCPA. 2008. User's manual for Pesticides. pp. 490, 624, Kor. Crop Protect. Association.
  20. Kim, S., Seo, S., Park, J.D., Kim, S.G., Kim, D.I. 2005. Effects of selected the predatory mite, Amblyseius cucumeris (Acari: Phytoseiidae). J. Entomol. Sci. 40, 107-114.
  21. Knaust, H.J., Poehling, H.M. 1994. Studies on the action of imidacloprid on cereal aphids and their efficiency to transmit the BYD-virus. Bulletin OILB-SROP. 17, 89-100.
  22. Kwon, H.R., Youn, Y.N. 2014. Feeding behaviors of Bemisia tabaci (Gennadius) (Hemiptera: Aleyrodidae) and changing of feeding behaviors to cyantraniliprole. CNU Jour. Agri. Sci. 41, 119-124.
  23. Kwon, Y.H., Yang, J.O., Oh, J.H., Noh, D.J., Yoon, C.M., Kim, G.H. 2008. Changes of feeding behavior of sweetpotato whitefly, Bemisia tabaci correlated with the residual effect of emamectin benzoate and pyridaben. Kor. J. Pesti. Sci. 12, 397-402.
  24. Lahm, G.P., Selby, T.P., Freudenberger, T.P., Stevenson, T.M., Myers, B.L., Seburyamo, G., Smith, B.K., Lindsey, F., Christopher, E.C., Daniel, C. 2005. Insecticidal anthranilic diamides: A new class of potent ryanodine receptor activators. Bioorganic & Medicinal Chemistry Letters 15, 4898-4906. https://doi.org/10.1016/j.bmcl.2005.08.034
  25. Landis, D.A., Wratten, S.D., Gurr, G.M. 2000. Habitat management to conserve natural enemies of arthropod pests in agriculture. Annu. Rev. Entomol. 45, 175-201. https://doi.org/10.1146/annurev.ento.45.1.175
  26. Lee, E.Y., Noh, H.H., Park, Y.S., Kang, K.W., Lee, K.H., Park, H.K., Yun, S.S., Jin, C.W., Han, S.K., Kyung, K.S. 2009. Residual charactersitics of neonicotinoid insecticide dinotefuran and thiacloprid in cucumber. Kor. J. Pes. Sci. 13, 98-104.
  27. Lee, M.H., Kim, S.E., Kim, Y.S., Lee, H.K., Lee, H.G., Jee, H.J., Kim, Y.K., Shim, C.K., Kim, M.J., Hong, S.J., Lee, Y.S. 2013. Studies on the eco-friendly management of whiteflies on orgnic tomatoes with oleic acid. Kor. J. Org. Agri. 21, 95-104. https://doi.org/10.11625/KJOA.2013.21.1.95
  28. Lee, M.L., De Barro, P.J. 2000. Characterization of different biotypes of Bemisia tabaci (Gennadius) (Homoptera: Aleyrodidae) in South Korea based on 16s robosomal RNA sequence. Kor. J. Entomol. 30, 125-130.
  29. Lee, Y.S., Kim, J.Y., Hong, S.S., Park, J., Park, H.H. 2012. Occurrence of sweet-potato whitefly, Bemisia tabaci(Hemiptera: Aleyrodidae) and its response to insecticide in gyeonggi Area. Kor. J. Appl. Entomol. 51, 377-382. https://doi.org/10.5656/KSAE.2012.09.0.051
  30. Leicht, W. 1993. Imidacloprid-a chloronicotinyl insecticide. Pest Outlook. 4, 1724.
  31. Liu, T.X., Zhang, Y.M., Peng, L.N., Patricia, R., Trumble, J.T. 2012. Risk assessment of selected insecticides on Tamarixia triozae (Hymenoptera: Eulophidae), a parasitoid of Bactericera cockerelli (Hemiptera: Trizoidae). Horticul. Entomol. 105, 490-496.
  32. Matsui, M. 1995. Efficiency of Encarsia formosa Gahan in suppressing population density of Bemisia argentifolii Bellows & Perring on tomatoes in plastic greenhouses. Jpn. J. Appl. Entomol. Zool. 39, 25-31. https://doi.org/10.1303/jjaez.39.25
  33. Misra, H.P. 2013. Management of serpentine leafminer (Liriomyza trifolii) (Diptera: Agromyzidae) on tomato (Lycopersicon esculentum) with a new insecticide cyantraniliprole. Indi. Jour. Agri. Sci. 83, 210-215.
  34. Mizell, R.F., Sconyer, M.C. 1992. Toxicity of imidacloprid to selected arthropod predators in the laboratory. Florida Entomol. 75, 277-280. https://doi.org/10.2307/3495632
  35. Nauen, R. 1995. Behavior monitoring effects of low systemic concentrations of imidacloprid on Myzus persicae with special reference to an antifeeding response. Pestic. Sci. 44, 145-153. https://doi.org/10.1002/ps.2780440207
  36. Nauen, R., Stump, N., Elbert, A. 2002. Toxicological and mechanistic studies on neonicotinoid cross resistance in Q-type Bemisia tabaci. Pest Manag. Sci. 58, 868-875. https://doi.org/10.1002/ps.557
  37. Negahban, M., Moharramipour, S., Sefidkon, F. 2007. Fumigant toxicity of essential oil from Artemisia siebri Besser against three stored product insects. J. Stored Prod. Res. 43, 123-128. https://doi.org/10.1016/j.jspr.2006.02.002
  38. Nerio, L.S., Verbal, J.O., Stanhenko, E.E. 2009. Repellent activity of essential oil from seven aromatic plants grown in Colombia against Sitophilus zeamais Mostchusky (Coleoptera). J. Stores Prod. Res. 45, 212-214. https://doi.org/10.1016/j.jspr.2009.01.002
  39. Park, B.J., Son, K.A., Park, M.K., Kim, J.B., Hong, S.M., Im, G.J., 2010. Monitoring of neonicotinoid pesiticde residues in fruit vegetable and human exposure assessment. Kor. J. of Pesti. Sci. 14, 104-109.
  40. Perring, T.M. 2001. The Bemisia tabaci species complex. Crop Prot. 20, 725-737. https://doi.org/10.1016/S0261-2194(01)00109-0
  41. Rubinstein, G., Morin, S., Czosneck, H. 1999. Transmission of tomato yellow leaf curl geminivirus to imidacloprid treated tomato plants by the whitefly, Bemisia tabaci (Hemiptera: Aleyrodidae). J. Econ. Entomol. 92, 658-662. https://doi.org/10.1093/jee/92.3.658
  42. SAS Institute. 2004. SAS user's guide: Statistics, version 8ed. SAS Institute, Inc., Cary, NC.
  43. Sattelle, D.B., Cordova, D., Cheek, T.R. 2008. Insect ryanodine receptors: molecular targets for novel pest control chemicals. Invertebrate Neuroscience. 8, 107-119. https://doi.org/10.1007/s10158-008-0076-4
  44. Seo, M.J., Kang, M.K., Seok, H.B., Jo, C.W., Choi, J.S., Jang, C., Hwang, I.C., Yu, Y.M., Youn, Y.N. 2009. Characteristics of feeding behaviors of Myzus persicae(Hemiptera: Aphididae) depending on inflow concentrations of dinotefuran. Kor. J. Appl. Entomol. 48, 171-178. https://doi.org/10.5656/KSAE.2009.48.2.171
  45. Yadav, D.S., Kamte, A.S., Jadhav, R.S. 2012. Bio-efficacy of cyantraniliprole, a new molecule against Scelodonta strigicollis Motschulsky and Spodoptera litura Farvicius in grapes. Pest Manag. Horticul. Eco. 18, 128-134.
  46. Youn, Y.N., Seo, M.J., Shin, J.G., Jang, C., Yu, Y.M. 2003. Toxicity of greenhouse pesticides to multicolored asian ladybeetle, Harmonia axyridis (Coleoptera: Coccinellidae). Biol. Control 28, 164-170. https://doi.org/10.1016/S1049-9644(03)00098-7