DOI QR코드

DOI QR Code

고준위폐기물 처분장의 완충재용 국내산 벤토나이트의 특성 측정

Measurement of Properties of Domestic Bentonite for a Buffer of an HLW Repository

  • 투고 : 2015.09.04
  • 심사 : 2015.12.30
  • 발행 : 2016.06.30

초록

심지층 처분시스템에서 완충재는 지하수 유입으로부터 처분용기를 보호하고, 방사성 핵종 유출을 저지하기 위한 중요한 방벽의 하나이다. 이에 완충재는 장기 건전성, 낮은 수리전도도, 낮은 유기물의 함량, 높은 핵종저지능, 높은 팽윤성, 높은 열전도도 등 기술적 요건을 충족시켜야 하며 이는 정량적 분석결과를 바탕으로 결정될 수 있다. 국내의 경우 한국원자력연구원에서는 1997년부터 경주지역에서 생산되는 벤토나이트를 완충재 후보물질로 연구를 지속하고 있다. 본 논문에서는 최근 동일 지역에서 생산된 벤토나이트(KJ-II)의 7가지 물리적 및 화학적 특성을 평가하였다. 분석 결과, 국내산 벤토나이트의 몬모릴로나이트 함량은 약 65% 정도이며, 벤토나이트는 Ca형 벤토나이트이다. 본 논문을 통해 완충재 후보물질의 성능평가 항목과 분석 방법에 대한 기준을 제시하고자 하였다.

The buffer in geological disposal system is one of the major elements to restrain the release of radionuclide and to protect the container from the inflow of groundwater. The buffer material requires long-term stability, low hydraulic conductivity, low organic content, high retardation of radionuclide, high swelling pressure, and high thermal conductivity. These requirements could be determined by the quantitative analysis results. In case of South Korea, the bentonites produced in Gyeongju area have been regarded as candidate buffer/backfill materials at KAERI (Korea Atomic Energy Research Institute) since 1997. According to the study on several physical and chemical characteristics of domestic bentonite in the same district, this is the Ca-type bentonite with about 65% of montmorillonite content. Through this study, we present the criteria for the performance evaluation items and methods when collecting new buffer/backfill materials.

키워드

참고문헌

  1. Swedish Nuclear Fuel Supply Co/Division KBS, Final Storage of Spent Nuclear Fuel-KBS-3, Svensk Kärnbränslehantering AB Report, Stockholm, (1983).
  2. J.Y. Lee, D.K. Cho, H.J. Choi, and J.W. Choi, "Concept of a Korean Reference Disposal System for Spent Fuels", J. Nucl. Sci. Tech, 44(12), 1565-1573 (2007). https://doi.org/10.1080/18811248.2007.9711407
  3. J.O. Lee and W.J. Cho, Thermal-hydro-mechanical Properties of Reference Bentonite Buffer for a Korean HLW Repository, Korea Atomic Energy Research Institute Report, KAERI/TR-3729 (2009).
  4. J.O. Lee, W.J. Cho, and S.K. Kwon, "Thermal-hydromechanical Properties of Reference Bentonite Buffer for a Korean HLW Repository", Tunnel and underground space, 21(4), 264-273 (2011).
  5. O. Karnland, S. Olsson, and U. Nisson, Mineralogy and sealing properties of various bentonites and smectiterich clay materials, Svensk Kärnbränslehantering AB Report, SKB TR-06-30 (2006).
  6. H.J. Choi, K.S. Kim, W.J. Cho, J.O. Lee, and J.W. Choi, et al., HLW long-term management system development: Development of engineered barrier system performance, Korea Atomic Energy Research Institute Report, KAERI/TR-3859 (2014).
  7. M.S. Lee, H.J. Choi, C.S. Lee, J.Y. Lee, and J.W. Lee, et al., State-of-the-art Report on the In-situ Demonstration Test of THM Coupled Process in the Engineered Barrier System, Korea Atomic Energy Research Institute Report, KAERI/AR-996/2013 (2013).
  8. Nuclear Waste Management Organization of Japan: Science and Technology Department, Development of repository concepts for volunteer siting environments, Nuclear Waste Management Organization of Japan Report, NUMO-TR-04-03 (2004).
  9. M.V. Villar, P.L. Martin, and J. M. Barcala, "Modification of physical, mechanical and hydraulic properties of bentonite by thermo-hydraulic gradients", Eng. Geol., 81, 284-297 (2005). https://doi.org/10.1016/j.enggeo.2005.06.012
  10. O. Karnland, Chemical and mineralogical characterization of the bentonite buffer for the acceptance control procedure in a KBS-3 repository, Svensk Karnbranslehantering AB Report, SKB TR-10-60 (2010).
  11. J.O. Lee, Establishment of the concept of buffer for an HLW repository: An approach, Korea Atomic Energy Research Institute Report, KAERI/TR-5824/2014 (2014).
  12. KS F 2306: Test method for water content of soils (2000).
  13. ASTM D 5890: standard test method for swelling index of clay mineral component of geosynthetic clay liners (2011).
  14. KS K 0764: Test method for swell index of clay mineral component of geosynthetic clay liner: Immersion methods in distilled water (2011).
  15. L. Carlson, Bentonite Mineralogy, Part 1: Methods of Investigation- a Lierature Review, Part 2: Mineralogical Research of Selected Bentonites, POSIVA, Working Report 2004-02 (2004).
  16. K.Ufer, H. Stanjek, G. Roth, R. Dohrmann, and R. Kleeberg, et al., "Quantitative phase analysis of bentonite by the Rietveld method", Clay Miner. Soc., 56(2), 272-282 (2008). https://doi.org/10.1346/CCMN.2008.0560210
  17. S.S. Tahir and N. Rauf, "Removal of cationic dye from aqueous solutions by adsorption onto bentonite clay", Chemosphere, 63(11), 1842-1848 (2006). https://doi.org/10.1016/j.chemosphere.2005.10.033
  18. KS M 0602: Measuring methods for specific gravity of solid (2010).
  19. L.P. Meier and G. Kahr, "Determination of the cation exchange capacity (CEC) of clay minerals using complexes of copper(II) ion with triethylenetetramine and tetraethylenepentamine", Clays. Clay. Miner., 47(3), 386-388 (1999). https://doi.org/10.1346/CCMN.1999.0470315
  20. L. Kiviranta and S. Kumpulainen, Quality control and characterization of bentonite materials, POSIVA, Working Report 2011-84 (2011).
  21. W.H. Hendershot and M. Duquette, "A simple barium chloride method for determining cation exchange capacity and exchangeable cations", Soil Sci. Soc. Am. J., 50, 605-608 (1986). https://doi.org/10.2136/sssaj1986.03615995005000030013x
  22. ISO 9277: 2010, Determination of the specific surface area of solids by gas adsorption-BET method (2010).
  23. KS A 0094: Determination of the specific surface area of powders (solids) by gas adsorption method (2014)
  24. J.O. Lee and W.J. Cho, Thermal-hydro-mechnical properties of reference bentonite buffer for a Korean HLW repository, Korea Atomic Energy Research Institute Report, KAERI/TR-3729/2009 (2009).

피인용 문헌

  1. A Prediction of Thermal Expansion Coefficient for Compacted Bentonite Buffer Materials vol.16, pp.3, 2018, https://doi.org/10.7733/jnfcwt.2018.16.3.339
  2. 고준위폐기물 처분시설의 압축 벤토나이트 완충재의 열전도도 추정 vol.33, pp.7, 2017, https://doi.org/10.7843/kgs.2017.33.7.55
  3. 고준위폐기물 처분시설 완충재의 온도변화에 따른 열물성 vol.33, pp.10, 2017, https://doi.org/10.7843/kgs.2017.33.10.25
  4. 국내 벤토나이트 완충재의 함수특성곡선 평가 vol.17, pp.1, 2019, https://doi.org/10.7733/jnfcwt.2019.17.1.29
  5. 온도 변화를 고려한 압축 벤토나이트 완충재의 수분흡입력 평가 vol.35, pp.11, 2016, https://doi.org/10.7843/kgs.2019.35.11.7
  6. Thermal Conductivity Evaluation of Compacted Bentonite Buffers Considering Temperature Variations vol.18, pp.1, 2020, https://doi.org/10.7733/jnfcwt.2020.18.1.43
  7. Measuring thermal conductivity and water suction for variably saturated bentonite vol.53, pp.3, 2016, https://doi.org/10.1016/j.net.2020.08.017
  8. 기계학습법을 통한 압축 벤토나이트의 열전도도 추정 모델 평가 vol.41, pp.2, 2016, https://doi.org/10.12652/ksce.2021.41.2.0123