DOI QR코드

DOI QR Code

Construction of the recombinant yeast strain with transformation of rice starch-saccharification enzymes and its alcohol fermentation

유전자 형질전환을 통한 쌀 전분 분해효소 재조합 효모균주의 개발과 발효특성조사

  • Lee, Ja-Yeon (Department of Biological Sciences, College of Natural Sciences, Chonnam National University) ;
  • Chin, Jong-Eon (Department of Cosmetology, Dongkang College) ;
  • Bai, Suk (Department of Biological Sciences, College of Natural Sciences, Chonnam National University)
  • 이자연 (전남대학교 자연과학대학 생물학과) ;
  • 진종언 (동강대학교 뷰티미용과) ;
  • 배석 (전남대학교 자연과학대학 생물학과)
  • Received : 2016.04.04
  • Accepted : 2016.05.10
  • Published : 2016.06.30

Abstract

To improve antioxidant glutathione (GSH) content and saccharification ability in sake yeasts of Saccharomyces cerevisiae, the ${\gamma}$-glutamylcysteine synthetase gene (GSH1) from S. cerevisiae, glucoamylase gene (GAM1) and ${\alpha}$-amylase gene (AMY) from Debaryomyces occidentalis were co-expressed in sake yeasts for manufacturing a refreshing alcoholic beverage abundant in GSH from rice starch. The extracellular GSH content of the recombinant sake yeasts increased 1.5-fold relative to the parental wide-type strain. The saccharification ability by glucoamylase of the new yeast strain expressing both GAM1 and AMY genes was 2-fold higher than that of the yeast strain expressing only GAM1 gene when grown in the culture medium containing 2% (w/v) rice starch. It generated 11% (v/v) ethanol from 20% (w/v) rice starch and consumed up to 90% of the starch content after 7 days of fermentation.

쌀 전분을 원료로 효모를 직접 이용하여 항산화제 glutathione(GSH)이 풍부한 알코올 음료를 제조할 목적으로 GSH 함량과 당화능을 증진시키기 위하여 Saccharomyces cerevisiae의 ${\gamma}$-glutamylcysteine synthetase 유전자(GSH1), Debaryomyces occidentalis의 glucoamylase 유전자(GAM1), 그리고 ${\alpha}$-amylase 유전자(AMY)를 청주 효모 S. cerevisiae에서 공동 발현시켰다. 재조합 청주 효모의 세포외 GSH 함량은 원균주에 비해 1.5배 증가하였다. 2% (w/v) 쌀 전분이 함유된 배지에서 배양하였을 때 GAM1과 AMY 유전자 모두 발현하는 효모 균주의 glucoamylase에 의한 당화능은 GAM1유전자만 발현하는 균주와 비교하여 2배 증가하였다. 이 새로운 균주는 쌀 전분이 20%(w/v) 함유된 배지에서 7일간 발효를 통해 에탄올 11% (v/v)를 생산하였고, 전분 함유량의 90% 이상을 소비하였다.

Keywords

References

  1. Asano, T., Kurose, N., and Tarumi, S. 2001. Isolation of high-malate-producing sake yeasts from low-maltose-assimilating mutants. J. Biosci. Bioeng. 92, 429-433. https://doi.org/10.1016/S1389-1723(01)80291-7
  2. Baba, S., Oguri, I., Fukuzawa, M., Moriyama, K., Lida, T., Kobayashi, I., and Imai, K. 1974. Maltose assimilation by Saccharomyces sake. J. Brew. Soc. Jpn. 69, 453-455. https://doi.org/10.6013/jbrewsocjapan1915.69.453
  3. Chen, J.L., Xie, L., Cai, J.J., Yang, C.S., and Duan, X.H. 2013. Enzymatic synthesis of glutathione using engineered Saccharomyces cerevisiae. Biotechnol. Lett. 35, 1259-1264. https://doi.org/10.1007/s10529-013-1191-9
  4. Dohmen, R.J., Strasser, A.W.M., Dahlems, U.M., and Hollenberg, C.P. 1990. Cloning of the Schwanniomyces occidentalis glucoamylase gene (GAM1) and its expression in Saccharomyces cerevisiae. Gene 95, 111-121. https://doi.org/10.1016/0378-1119(90)90421-M
  5. Domingues, L., Onnela, M.L., Teixeira, J.A., Lima, N., and Penttila, M. 2000. Construction of a flocculent brewer's yeast strain secreting Aspergillus niger ${\beta}$-galactosidase. Appl. Microbiol. Biotechnol. 54, 97-103. https://doi.org/10.1007/s002530000358
  6. Eksteen, J.M., van Renseburg, P., Cordero Otero, R.R., and Pretorius, I.S. 2003. Starch fermentation by recombinant Saccharomyces cerevisiae strains expressing the ${\alpha}$-amylase and glucoamylase genes from Lipomyces kononenkoae and Saccharomycopsis fibuligera. Biotechnol. Bioeng. 84, 639-646. https://doi.org/10.1002/bit.10797
  7. Fan, X., He, X., Guo, X., Qu, N., Wang, C., and Zhang, B. 2004. Increasing glutathione formation by functional expression of the ${\gamma}$-glutamylcysteine synthetase gene in Saccharomyces cerevisiae. Biotechnol. Lett. 26, 415-417. https://doi.org/10.1023/B:BILE.0000018261.14427.e8
  8. Fujieda, T., Kitamura, Y., Yamasaki, H., Furuishi, A., and Motobayashi, K. 2012. An experimental study on whole paddy saccharification and fermentation for rice ethanol production. Biomass Bioeng. 44, 135-141. https://doi.org/10.1016/j.biombioe.2012.04.019
  9. Ghang, D.M., Yu, L., Lim, M.H., Ko, H.M., Im, S.Y., Lee, H.B., and Bai, S. 2007. Efficient one-step starch utilization by industrial strains of Saccharomyces cerevisiae expressing the glucoamylase and ${\alpha}$-amylase genes from Debaryomyces occidentalis. Biotechnol. Lett. 29, 1203-1208. https://doi.org/10.1007/s10529-007-9371-0
  10. Gietz, D., St. Jean, A., Woods, R., and Schiestl, R.H. 1992. Improved method for high efficiency transformation of intact yeast cells. Nucleic Acids Res. 20, 1425. https://doi.org/10.1093/nar/20.6.1425
  11. Im, Y.K., Park, J.Y., Lee, J.Y., Choi, S.H., Chin, J.E., Ko, H.M., Kim, I.C., and Bai, S. 2013. Construction of amylolytic industrial strains of Saccharomyces cerevisiae for improved ethanol production from raw starch. Korean J. Microbiol. 40, 200-204.
  12. Kang, N.Y., Park, J.N., Chin, J.E., Lee, H.B., Im, S.Y., and Bai, S. 2003. Construction of an amylolytic industrial strain of Saccharomyces cerevisiae containing the Schwanniomyces occidentalis ${\alpha}$-amylase gene. Biotechnol. Lett. 25, 1847-1851. https://doi.org/10.1023/A:1026281627466
  13. Kim, H.R., Im, Y.K., Ko, H.M., Chin, J.E., Kim, I.C., Lee, H.B., and Bai, S. 2011. Raw starch fermentation to ethanol by an industrial distiller's strain of Saccharomyces cerevisiae expressing glucoamylase and ${\alpha}$-amylase genes. Biotechnol. Lett. 33, 1643-1648. https://doi.org/10.1007/s10529-011-0613-9
  14. Kim, J.H., Kim, H.R., Lim, M.H., Ko, H.M., Chin, J.E., Lee, H.B., Kim, I.C., and Bai, S. 2010. Construction of a direct starchfermenting industrial strain of Saccharomyces cerevisiae producing glucoamylase, ${\alpha}$-amylase and debranching enzyme. Biotechnol. Lett. 32, 713-719. https://doi.org/10.1007/s10529-010-0212-1
  15. Kim, K., Park, C.S., Mattoon, J.R. 1988. High-efficiency, one-step utilization by transformed Saccharomyces cerevisiae cells which secrete both yeast glucoamylase and mouse ${\alpha}$-amylase. Appl. Environ. Microbiol. 54, 966-971.
  16. Lee, F.W. and Da Silva, N.A. 1997. Improved efficiency and stability of multiple cloned gene insertions at the ${\delta}$ sequences of Saccharomyces cerevisiae. Appl. Microbiol. Biotechnol. 48, 339-345. https://doi.org/10.1007/s002530051059
  17. Lee, J.Y., Im, Y.K., Ko, H.M., Chin, J.E., Kim, I.C., Lee, H.B., and Bai, S. 2015. Direct utilization of purple sweet potato by sake yeasts to produce an anthocyanin-rich alcoholic beverage. Biotechnol. Lett. 37, 1439-1445. https://doi.org/10.1007/s10529-015-1811-7
  18. Lin, L.L., Ma, Y.J., Chien, H.R., and Hsu, W.H. 1998. Construction of an amylolytic yeast by multiple integration of the Aspergillus awamori glucoamylase gene into a Saccharomyces cerevisiae chromosome. Enzyme Microb. Technol. 23, 360-365. https://doi.org/10.1016/S0141-0229(98)00058-1
  19. Ma, Y., Lin, L.L., Chien, H.R., and Hsu, W.H. 2000. Effcient utilization of starch by a recombinant strain of Saccharomyces cerevisiae producing glucoamylase and isoamylase. Biotechnol. Appl. Biochem. 31, 55-59. https://doi.org/10.1042/BA19990080
  20. Nieto, A., Prieto, J.A., and Sanz, P. 1999. Stable high-copy number integration of Aspergillus orizae ${\alpha}$-amylase cDNA in an industrial baker's yeast strain. Biotechnol. Prog. 15, 459-466. https://doi.org/10.1021/bp9900256
  21. Park, J.Y., Lee, J.Y., Choi, S.H., Ko, H.M., Chin, J.E., Kim, I.C., Lee, H.B., and Bai, S. 2014. Construction of dextrin and isomaltose-assimilating brewer's yeasts for production of low-carbohydrate beer. Biotechnol. Lett. 36, 1693-1699. https://doi.org/10.1007/s10529-014-1530-5
  22. Saito, S., Mieno, Y., Nagashima, T., Kumagai, C., and Kitamoto, K. 1996. Breeding of a new type of baker's yeast by ${\delta}$-integration for overproduction of glucoamylase using a homothallic yeast. J. Ferment. Bioeng. 81, 98-103. https://doi.org/10.1016/0922-338X(96)87584-2
  23. Shigechi, H., Koh, J., Fujita, Y., Matsumoto, T., Bito, Y., Ueda, M., Satoh, E., Fukuda, H., and Kondo, A. 2004. Direct production of ethanol from raw corn starch via fermentation by use of a novel surface-engineered yeast strain codisplaying glucoamylase and ${\alpha}$-amylase. Appl. Environ. Microbiol. 70, 5037-5040. https://doi.org/10.1128/AEM.70.8.5037-5040.2004
  24. Suresh, K., Kiran sree, N., and Rao, V. 1999. Utilization of damaged sorghum and rice grains for ethanol production by simultaneous saccharification and fermentation. Bioresour. Technol. 68, 301-304. https://doi.org/10.1016/S0960-8524(98)00135-7
  25. Wang, Q.J., Sun, D., Jeong, S., Yeo, S., Choi, J., and Choi, H. 2014. Screening of rice cultivars for brewing high quality turbid rice wine. LWT-Food Sci. Technol. 56, 145-152. https://doi.org/10.1016/j.lwt.2013.10.032
  26. Wang, J.J., Wang, Z.Y., He, X.P., and Zhang, B.R. 2010a. Construction of amylolytic industrial brewing yeast strain with high glutathione content for manufacturing beer with improved anti-staling capability and flavor. J. Microbiol. Biotechnol. 20, 1539-1545. https://doi.org/10.4014/jmb.1004.04007
  27. Wang, J.J., Wang, Z.Y., Liu, X.F., Guo, X.N., He, X.P., Wensel, P.C., and Zhang, B.R. 2010b. Construction of an industrial brewing yeast strain to manufacture beer with low caloric content and improved flavor. J. Microbiol. Biotechnol. 20, 767-774.
  28. Wei, G., Li, Y., Du, G., and Chen, J. 2003. Effect of surfactants on extracellular accumulation of glutathione by Saccharomyces cerevisiae. Proc. Biochem. 38, 1133-1138. https://doi.org/10.1016/S0032-9592(02)00249-2

Cited by

  1. Bacillus amyloliquefaciens로 제조한 콩 발효물의 발효시간에 따른 품질 변화 vol.33, pp.4, 2016, https://doi.org/10.9799/ksfan.2020.33.4.381