References
- Ambraseys, N.N. (1988), "Engineering Seismology", Earthquake Engineering & Structural Dynamics, Vol.17, No.1, pp.51-105. https://doi.org/10.1002/eqe.4290170102
- Andrus, R.D., Hayati, H., and Mohanan, N.P. (2009), "Correcting Liquefaction Resistance for Aged Sands Using Measured to Estimated Velocity Ratio", Journal of Geotechnical and Geoenvironmental Engineering, Vol.135, No.6, pp.735-744. https://doi.org/10.1061/(ASCE)GT.1943-5606.0000025
- Andrus, R.D. and Stokoe II, K.H. (2000), "Liquefaction Resistance of Soils from Shear-Wave Velocity", Journal of Geotechnical and Geoenvironmental Engineering, Vol.126, No.11, pp.1015-1025. https://doi.org/10.1061/(ASCE)1090-0241(2000)126:11(1015)
- Andrus, R.D. and Stokoe, K.H. (1997), Liquefaction resistance based on shear wave velocity, 1088-3800, US National Center for Earthquake Engineering Research (NCEER), pp.89-128.
- Arango, I. (1996), "Magnitude Scaling Factors for Soil Liquefaction Evaluations", Journal of Geotechnical Engineering-Asce, Vol.122, No.11, pp.929-936. https://doi.org/10.1061/(ASCE)0733-9410(1996)122:11(929)
- Booker, J.R., Rahman, M.S., and Seed, H.B. (1976), GADFLEA: A computer program for the analysis of pore pressure generation and dissipation during cyclic or earthquake loading, California Univ., Berkeley (USA). Earthquake Engineering Research Center.
- Boulanger, R. and Idriss, I. (2014), CPT and SPT based liquefaction triggering procedures, UCD/CGM-14/01, Center for Geotechnical Modeling, Department of Civil and Environmental Engineering, University of California at Davis.
- Boulanger, R. and Idriss, I. (2016), "CPT-Based Liquefaction Triggering Procedure", Journal of Geotechnical and Geoenvironmental Engineering, Vol.142, No.2, pp.1-11.
- Boulanger, R. and Ziotopoulou, K. (2015), PM4Sand (Version 3): a sand plasticity model for earthquake engineering applications, UCD/CGM-15/01, Center for Geotechnical Modeling, Department of Civil and Environmental Engineering, University of California at Davis.
- Boulanger, R.W. and Seed, R.B. (1995), "Liquefaction of Sand under Bidirectional Monotonic and Cyclic Loading", Journal of Geotechnical Engineering-Asce, Vol.121, No.12, pp.870-878. https://doi.org/10.1061/(ASCE)0733-9410(1995)121:12(870)
- Brandes, H.G. and Seidman, J. (2008), "Dynamic and Static behavior of Calcareous Sands", The Eighteenth International Offshore and Polar Engineering Conference: International Society of Offshore and Polar Engineers, pp.573-578.
- Castro, G. (1975), "Liquefaction and Cyclic Mobility of Saturated Sands", Journal of the Geotechnical Engineering Division, Vol.101, No.6, pp.551-569.
- Cetin, K.O., Seed, R.B., Der Kiureghian, A., Tokimatsu, K., Harder Jr, L.F., Kayen, R.E., and Moss, R.E. (2004), "Standard Penetration Test-based Probabilistic and Deterministic Assessment of Seismic Soil Liquefaction Potential", Journal of Geotechnical and Geoenvironmental Engineering, Vol.130, No.12, pp.1314-1340. https://doi.org/10.1061/(ASCE)1090-0241(2004)130:12(1314)
- Da Fonseca, A.V., Soares, M., and Fourie, A.B. (2015), "Cyclic DSS Tests for the Evaluation of Stress Densification Effects in Liquefaction Assessment", Soil Dynamics and Earthquake Engineering, Vol.75, pp.98-111. https://doi.org/10.1016/j.soildyn.2015.03.016
- De Alba, P.A., Chan, C.K., and Seed, H.B. (1976), "Sand Liquefaction in Large-scale Simple Shear Tests", Journal of the Geotechnical Engineering Division, Vol.102, No.9, pp.909-927.
- Derakhshandi, M., Rathje, E.M., Hazirbaba, K., and Mirhosseini, S. (2008), "The Effect of Plastic Fines on the Pore Pressure Generation Characteristics of Saturated Sands", Soil Dynamics and Earthquake Engineering, Vol.28, No.5, pp.376-386. https://doi.org/10.1016/j.soildyn.2007.07.002
- Finn, W., Pickering, D.J., and Bransby, P.L. (1971), "Sand Liquefaction in Triaxial and Simple Shear Tests", Journal of Soil Mechanics and Foundations Division, ASCE, Vol.97, No.4, pp.639-659.
- Idriss, I. and Boulanger, R.W. (2008), Soil liquefaction during earthquakes, Earthquake engineering research institute.
- Idriss, I.M. and Boulanger, R.W. (2012), "Examination of SPT-Based Liquefaction Triggering Correlations", Earthquake Spectra, Vol.28, No.3, pp.989-1018. https://doi.org/10.1193/1.4000071
- Ishihara, K. (1996), Soil behaviour in earthquake geotechnics, The Oxford engineering science series.
- Kayen, R., Moss, R., Thompson, E., Seed, R., Cetin, K., Kiureghian, A.D., Tanaka, Y., and Tokimatsu, K. (2013), "Shear-wave Velocitybased Probabilistic and Deterministic Assessment of Seismic Soil Liquefaction Potential", Journal of Geotechnical and Geoenvironmental Engineering, Vol.139, No.3, pp.407-419. https://doi.org/10.1061/(ASCE)GT.1943-5606.0000743
- Kramer, S.L. (1996), Geotechnical earthquake engineering, Prentice Hall.
- Lee, K.L. and Albaisa, A. (1974), "Earthquake Induced Settlements in Saturated Sands", Journal of the Geotechnical Engineering Division, ASCE, Vol.100, No.1, pp.387-406.
- Liu, A.H., Stewart, J.P., Abrahamson, N.A., and Moriwaki, Y. (2001), "Equivalent Number of Uniform Stress Cycles for Soil Liquefaction Analysis", Journal of Geotechnical and Geoenvironmental Engineering, Vol.127, No.12, pp.1017-1026. https://doi.org/10.1061/(ASCE)1090-0241(2001)127:12(1017)
- MOF (1999), Standard of Seismic design for fishing port and harbor facilities, Ministry of Oceans and Fisheries.
- Moss, R., Seed, R.B., Kayen, R.E., Stewart, J.P., Der Kiureghian, A., and Cetin, K.O. (2006), "CPT-based Probabilistic and Deterministic Assessment of in Situ Seismic Soil Liquefaction Potential", Journal of Geotechnical and Geoenvironmental Engineering, Vol.132, No.8, pp.1033-1051.
- Park, T., Park, D., and Ahn, J.K. (2014), "Pore Pressure Model based on Accumulated Stress", Bulletin of Earthquake Engineering, Vol.13, No.7, pp.1913-1926. https://doi.org/10.1007/s10518-014-9702-1
- Polito, C.P., Green, R.A., and Lee, J. (2008), "Pore Pressure Generation Models for Sands and Silty Soils Subjected to Cyclic Loading", Journal of Geotechnical and Geoenvironmental Engineering, Vol.134, No.10, pp.1490-1500. https://doi.org/10.1061/(ASCE)1090-0241(2008)134:10(1490)
- Seed, H.B. and Idriss, I.M. (1982), Ground motions and soil liquefaction during earthquakes, Earthquake Engineering Research Institute.
- Seed, H.B. and Peacock, W.H. (1971), "Test Procedures for Measuring Soil Liquefaction Characteristics", Journal of the Soil Mechanics and Foundations Division, ASCE, Vol.97, No.8, pp.1099-1119.
- Seed, H.B., Tokimatsu, K., Harder, L., and Chung, R.M. (1985), "Influence of SPT Procedures in Soil Liquefaction Resistance Evaluations", Journal of Geotechnical Engineering, Vol.111, No.12, pp.1425-1445. https://doi.org/10.1061/(ASCE)0733-9410(1985)111:12(1425)
- Shim, H. (2001), The comparison of undrained behavior of sand between simple shear condition and triaxial compression condition, Master Thesis, Inha University.
- Sivathayalan, S. (1994), Static, cyclic and post liquefaction simple shear response of sands, Master thesis, University of British Columbia.
- Sriskandakumar, S. (2004), Cyclic loading response of Fraser River sand for validation of numerical models simulating centrifuge tests, Master thesis, University of British Columbia.
- Towhata, I. (2008), Geotechnical earthquake engineering, Springer Science and Business Media.
- Xenaki, V.C. and Athanasopoulos, G.A. (2003), "Liquefaction Resistance of Sand-silt mixtures: An Experimental Investigation of the Effect of Fines", Soil Dynamics and Earthquake Engineering, Vol.23, No.3, pp.183-194.
- Yoon, Y., Yoon, G., and Choi, J. (2007), "Liquefaction Strength of Shelly Sand in Cyclic Simple Shear Test", Journal of Korean Geo-Environmental Society, Vol.8, No.6, pp.69-76.
- Youd, T.L. and Noble, S.K. (1997), Liquefaction criteria based on statistical and probabilistic analyses, US National Center for Earthquake Engineering Research (NCEER).
- Ziotopoulou, K. and Boulanger, R.W. (2012), "Constitutive Modeling of Duration and Overburden Effects in Liquefaction Evaluations", Proceedings of second international conference on performancebased design in earthquake geotechnical engineering. Taormina, Italy, May, pp.28-30.