DOI QR코드

DOI QR Code

Desalting of tobacco extract using electrodialysis

  • Ge, Shaolin (CAS Key Laboratory of Soft Matter Chemistry, Laboratory of Functional Membranes, School of Chemistry and Materials Science, University of Science and Technology of China) ;
  • Li, Wei (Hefei ChemJoy Polymer Materials, Co., LTD.) ;
  • Zhang, Zhao (China Tobacco Anhui Industrial Co., LTD.) ;
  • Li, Chuanrun (CAS Key Laboratory of Soft Matter Chemistry, Laboratory of Functional Membranes, School of Chemistry and Materials Science, University of Science and Technology of China) ;
  • Wang, Yaoming (CAS Key Laboratory of Soft Matter Chemistry, Laboratory of Functional Membranes, School of Chemistry and Materials Science, University of Science and Technology of China)
  • Received : 2015.08.13
  • Accepted : 2016.04.11
  • Published : 2016.07.25

Abstract

Papermaking reconstituted tobacco is an important strategy for recycling the waste tobacco residues. To indentify the influences of the inorganic components on harmful components delivery in cigarette smoke, a self-made electrodialysis stack was assembled to desalt the tobacco extract. The influences of the applied current and extract content on the removal rate of the inorganic ions were investigated. Results indicated that the applied current was a dominant impact on the desalination performance. High currents lower than the limiting current density could accelerate the desalting efficiency but cause higher energy consumption. A current of 2 A, or current density of ${\sim}11mA{\cdot}cm^{-2}$, was an optimal choice by considering both the energy consumption and desalting efficiency. A 20% tobacco extract was an appropriate content for the electrodialysis process. More than 90% of inorganic ions could be removed under the optimum condition. The preliminary result indicated that removal of inorganic components was beneficial to decrease the harmful component delivery in cigarette smoke. Naturally, ED is an environmentally friendly and high-effective technology for desalting the tobacco extract.

Keywords

Acknowledgement

Supported by : National Natural Science Foundation of China, Anhui Key Laboratory of Tobacco Chemistry

References

  1. Aghajanyan, A.E., Tsaturyan, A.O., Hambardzumyan, A.A. and Saghyan, A.S. (2013), "Obtaining the zwitterionic form of L-lysine from L-lysine monohydrochloride by electrodialysis", Membr. Water Treat., Int. J., 4(1), 1-9. https://doi.org/10.12989/mwt.2013.4.1.001
  2. Ali, M.B.S. and Hamrouni, B. (2016), "Development of a predictive model of the limiting current density of an electrodialysis process using response surface methodology", Membr. Water Treat., Int. J., 7(2), 127-141. https://doi.org/10.12989/mwt.2016.7.2.127
  3. Baker, R.R., da Silva, J.R.P. and Smith, G. (2004), "The effect of tobacco ingredients on smoke chemistry. Part I:Flavourings and additives", Food Chem. Toxicol., 42(S), 3-37. https://doi.org/10.1016/S0278-6915(03)00189-3
  4. BAT Technical Memorandum, 79-09-063, 18.9.79.
  5. Burley stem washing (2004), November 04. Philip Morris. URL: http://industrydocuments.library.ucsf.edu/tobacco/docs/jtfx0151
  6. Burley Stem Washing, URL: http://legacy.library.ucsf.edu/tid/vaz94g00/pdf
  7. Chen, M.S., Xu, L., Tian, H.L., Yin, C.Y., Zhou, Z.L., Li, Y., Ma, J.G. and Zhong, F. (2014), "Effects of common ammonium salt on the thermal behavior of reconstituted tobacco sheet", J. Therm. Anal. Calorim., 118(3), 1747-1753. https://doi.org/10.1007/s10973-014-4049-z
  8. Denitration of Venezuelan Burley Stem Part II: The Effect on Smoke Deliveries. URL: http://www.legacy.library.ucsf.edu/tid/zna11a99/pdf
  9. Flischer, S., Spiegehalder, B. and Pressumann, R. (1989), "Performed tobacco-specific nitrosamines in tobacco-role of nitrate and influence of tobacco type", Carcinogenesis, 10(8), 1511-1517. https://doi.org/10.1093/carcin/10.8.1511
  10. Gaisch, H., Krasna, B. and Schulthess, D. (1986), "Continuous method of denitrating tobacco extracts", US Patent 4622982.
  11. Huang, C.H. and Xu, T.W. (2008), "Electrodialysis-based separation technologies: acritical review", AICHE J., 54(12), 3147-3159. https://doi.org/10.1002/aic.11643
  12. ISO 4387 (1991), Cigarettes-determination of total and nicotine free dry particulate matter using a routine analytical smoking machine; Reference number ISO 4378:1991 (E), International Organization for Standardization: Geneva, Switzerland.
  13. Jeanneret, C. and Morris, P. (1981), "Legislation 800124800224". URL: http://industrydocuments.library.ucsf.edu/tobacco/docs/klxk0000
  14. Johnson, M.D., Schilz, J., Djordjevic, M.V., Rice, J.R. and Shields, P.G. (2009), "Evaluation of in vitro assays for assessing the toxicity of cigarette smoke and smokeless tobacco", Cancer. Epidemiol. Biomarkers Prev., 18(12), 3263-3304. https://doi.org/10.1158/1055-9965.EPI-09-0965
  15. Krol, J.J., Wessling, M. and Strathmann, H. (1999), "Concentration polarization with monopolar ion exchange membranes: current-voltage curves and water dissociation", J. Membr. Sci., 162(1-2), 145-154. https://doi.org/10.1016/S0376-7388(99)00133-7
  16. Lee, H.J., Strathmann, H. and Moon, S.H. (2006), "Determination of the limiting current density in electrodialysis desalination as an empirical function of linear velocity", Desalination, 190(1-3), 43-50. https://doi.org/10.1016/j.desal.2005.08.004
  17. Majewska-Nowak, K.M. (2013), "Treatment of organic dye solutions by electrodialysis", Membr. Water Treat., Int. J., 4(3), 203-214. https://doi.org/10.12989/mwt.2013.04.3.203
  18. Mattina, C.F. and Selke, A.S. (1973), "Method of making reconstituted tobacco having reduced nitrates", US Patent 3847164.
  19. Muller, A.L.H., Bizzi, C.A., Pereira, J.S.F., Mesko, M.F., Moraes, D.P., Flores, E.M.M. and Muller, E.I. (2011), "Bromine and chlorine determination in cigarette tobacco using microwave-induced combustionand inductively coupled plasma optical emission spectrometry", J. Braz. Chem. Soc., 22(9), 1649-1655. https://doi.org/10.1590/S0103-50532011001000011
  20. Narkowicz, S., Polkowska, Z., Kielbratowska, B. and Namiesnik, J. (2013), "Environmental tobaccosmoke: Exposure, health effects, and analysis", Crit. Rev. Environ. Sci. Technol., 43(2), 121-161. https://doi.org/10.1080/10643389.2011.604253
  21. Nunes-Alves, A., Nery, A.A. and Ulrich, H. (2013), "Tobacco nitrosamine N-nitrosonornicotine as inhibitor of neuronal nicotinic acetylcholine receptors", J. Mol. Neurosci., 49, 52-61. https://doi.org/10.1007/s12031-012-9859-5
  22. Paine III, J.B., Pithawalla, Y.B. and Naworal, J.D. (2008), "Carbohydrate pyrolysis mechanisms from isotopic labeling: Part 3. The Pyrolysis of d-glucose: Formation of C3 and C4 carbonyl compounds and a cyclopentenedione isomer by electrocyclic fragmentation mechanisms", J. Anal. Appl. Pyrol., 82(1), 42-69. https://doi.org/10.1016/j.jaap.2007.12.005
  23. Seeman, J.L., Dixon, M. and Haussmann, H.J. (2002), "Acetaldehyde in mainstream tobacco smoke: formation and occurrence in smoke and bioavailability in the smoker", Chem. Res. Toxicol., 15(11), 1331-1350. https://doi.org/10.1021/tx020069f
  24. Seyler, T.H., Kim, J.G., Hodgson, J.A., Cowan, E.A., Blount, B.C. and Wang, L. (2013), "Quantitation ofurinary volatile nitrosamines from exposure to tobacco smoke", J. Anal. Toxicol., 37(4), 195-202. https://doi.org/10.1093/jat/bkt020
  25. Strathmann, H. (2011), "Membrane separation process: Current relevance and future opportunities", AICHE J., 47(5), 1077-1087. https://doi.org/10.1002/aic.690470514
  26. Stedman, R.L. (1968), "The chemical composition of tobacco and tobacco smoke", Chem. Rev., 68(2), 53-207.
  27. Tanaka, Y., Uchino, H. and Murakami, M. (2012), "Continuous ion-exchange membrane electrodialysis of mother liquid discharged from a salt-manufacturing plant and transport of $Cl^-$ ions and $SO_4^{2-}$ ions", Membr.Water Treat., Int. J., 3(1), 63-76. https://doi.org/10.12989/mwt.2012.3.1.063
  28. Uhl (1977), RG RL Denitration separete burley processing. URL: http://legacy.library.ucsf.edutid/kzm02a00/pdf
  29. Verma, M.S., Lakshmanan, C.C. and Chaudhury, A.S. (2009), "A process for the manufacture of reconstituted tobacco sheet", Indian Patent 194046.
  30. Wang, W.S., Wang, Y. and Yang, L.J. (2005), "Studies on thermal behavior of reconstituted tobacco sheet", Thermochim. Acta, 437(1-2), 7-11. https://doi.org/10.1016/j.tca.2005.06.002
  31. Xu, T.W., Fu, R.Q., Yang, W.H. and Xue, Y.H. (2006), "Fundamental studies on a novel series of bipolar membranes prepared from poly (2,6-dimethyl-1,4-phenylene oxide) (PPO) - II. Effect of functional group type of anion-exchange layers on I-V curves of bipolar membranes", J. Membr. Sci., 279(1-2), 282-290. https://doi.org/10.1016/j.memsci.2005.12.016
  32. Zarrelli, A., DellaGreca, M., Parolisi, A., Lesce, M.R., Cermola, F., Temussi, F., Isidori, M., Lavorgna, M., Passananti, M. and Previtera, L. (2012), "Chemical fate and genotoxic risk associated with hypochloritetreatment of nicotine", Sci. Total Environ., 426(1), 132-138. https://doi.org/10.1016/j.scitotenv.2012.03.047
  33. Zhang, Z.H., Ge, S.L., Jiang, C.X., Zhao, Y. and Wang, Y.M. (2004), "Improving the smoking quality of papermaking tobacco sheetextract by using electrodialysis", Membr. Water. Treat., Int. J., 5(1), 31-40.
  34. Zhou, S., Wang, C., Xu, Y. and Hu, Y. (2011), "The pyrolysis of cigarette paperunder the conditions that simulate cigarette smouldering andpuffing", J. Therm. Anal. Calorim., 104(3), 1097-1106. https://doi.org/10.1007/s10973-011-1354-7
  35. Zhou, S., Ning, M., Zhang, Y.P., He, Q., Wang, X.F., Zhu, D.L., Guo, S., Hong, N.N. and Hu, Y. (2014), "Significant removal of harmful compounds in mainstream cigarette smoke using carbon nanotubes mixture prepared by catalytic pyrolysis", Adsorpt. Sci. Technol., 32(6), 453-464. https://doi.org/10.1260/0263-6174.32.6.453

Cited by

  1. Development of the efficient technology for isolating proline from culture liquid pp.1520-5754, 2019, https://doi.org/10.1080/01496395.2019.1574820
  2. Desalting of papermaking tobacco sheet extract using selective electrodialysis vol.8, pp.4, 2016, https://doi.org/10.12989/mwt.2017.8.4.381
  3. Electrodialytic Desalination of Tobacco Sheet Extract: Membrane Fouling Mechanism and Mitigation Strategies vol.10, pp.9, 2016, https://doi.org/10.3390/membranes10090245