Anti-inflammatory Effects of MeOH Extract of Corylopsis gotoana Uyeki

히어리의 항염증 효능

  • 이하나 (우석대학교 약학대학) ;
  • 차동석 (우석대학교 약학대학) ;
  • 전훈 (우석대학교 약학대학)
  • Received : 2016.04.25
  • Accepted : 2016.06.23
  • Published : 2016.06.30

Abstract

Corylopsis gotoana (Hamamelidaceae) has been used as a traditional medicine for the treatment various diseases including cold, edema and vomiting. However, previous studies regarding component analysis and pharmacological actions of C. gotoana are extremely limited until now. In this study, we investigated anti-inflammatory activities of the methanolic extract of the twigs of Corylopsis gotoana (MCG) both in vitro and in vivo. MCG effectively inhibited excessive NO production in IFN-${\gamma}$ and LPS-stimulated mouse peritoneal macrophages without notable cytotoxicity. In addition, we also found that MCG could attenuate the expression of inflammatory mediators such as inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2). We further tested in vivo anti-inflammatory activity of MCG using paw edema mouse model. Herein, MCG demonstrated significant suppression on the paw edema induced by both of trypsin and carrageenan. These results indicated that MCG has potent anti-inflammatory potential and may be useful for prevention and treatments of inflammatory diseases.

Keywords

References

  1. Lawrence, T., Willoughby, D. A. and Gilroy, D. W. (2002) Anti-inflammatory lipid mediators and insights into the resolution of inflammation. Nature Reviews Immunology 2: 787-795. https://doi.org/10.1038/nri915
  2. Rakel, D. P. and Rindfleisch, A. (2005) Inflammation: nutritional, botanical, and mind-body influences. South. Med. J. 98: 303-311. https://doi.org/10.1097/01.SMJ.0000154775.16761.A9
  3. Fujiwara, N. and Kobayashi, K. (2005) Macrophages in inflammation. Current Drug Targets-Inflammation & Allergy 4: 281-286. https://doi.org/10.2174/1568010054022024
  4. Ley, S., Weigert, A. and Brune, B. (2010) Neuromediators in inflammation-a macrophage/nerve connection. Immunobiology 215: 674-684. https://doi.org/10.1016/j.imbio.2010.05.027
  5. Saha, K., Lajis, N., Israf, D., Hamzah, A. S., Khozirah, S., Khamis, S. and Syahida, A. (2004) Evaluation of antioxidant and nitric oxide inhibitory activities of selected Malaysian medicinal plants. J. Ethnopharmacol. 92: 263-267. https://doi.org/10.1016/j.jep.2004.03.007
  6. Varin, A. and Gordon, S. (2009) Alternative activation of macrophages: immune function and cellular biology. Immunobiology 214: 630-641. https://doi.org/10.1016/j.imbio.2008.11.009
  7. Brown, G. C. (1999) Nitric oxide and mitochondrial respiration. Biochimica et Biophysica Acta (BBA)-Bioenergeics 1411: 351-369. https://doi.org/10.1016/S0005-2728(99)00025-0
  8. Nagy, G., Clark, J. M., Buzas, E. I., Gorman, C. L. and Cope, A. P. (2007) Nitric oxide, chronic inflammation and autoimmunity. Immunol. Lett. 111: 1-5. https://doi.org/10.1016/j.imlet.2007.04.013
  9. Bredt, D. S. (1999) Endogenous nitric oxide synthesis: biological functions and pathophysiology. Free Radic. Res. 31: 577-596. https://doi.org/10.1080/10715769900301161
  10. Crofford, L. J. (1997) COX-1 and COX-2 tissue expression: implications and predictions. J. Rheumatol. Suppl. 49: 15-19.
  11. Jeong, J. B. and Jeong, H. J. (2010) Rheosmin, a naturally occurring phenolic compound inhibits LPS-induced iNOS and COX-2 expression in RAW264. 7 cells by blocking $NF-{\kappa}B$ activation pathway. Food and Chem. Toxicol. 48: 2148-2153. https://doi.org/10.1016/j.fct.2010.05.020
  12. Chang, Y., Li, P., Chen, B., Chang, M., Wang, J., Chiu, W. and Lin, C. (2006) Lipoteichoic acid-induced nitric oxide synthase expression in RAW 264.7 macrophages is mediated by cyclooxygenase-2, prostaglandin E 2, protein kinase A, p38 MAPK, and nuclear factor-${\kappa}B$ pathways. Cell Signal 18: 1235-1243. https://doi.org/10.1016/j.cellsig.2005.10.005
  13. Park, E., Min, H., Ahn, Y., Bae, C., Pyee, J. and Lee, S. K. (2004) Synthesis and inhibitory effects of pinosylvin derivatives on prostaglandin E 2 production in lipopolysaccharideinduced mouse macrophage cells. Bioorg. Med. Chem. Lett. 14: 5895-5898. https://doi.org/10.1016/j.bmcl.2004.09.022
  14. Lee, J. H., Kang, H. C., Ahn, H. C. and Cho, H. S. (1999) Vegetation structure and sprouting dynamics of Corylopsis coreana community belong to Korean endemic plants. Korean J. Environ. Ecol. 13: 280-287.
  15. Jang, H. T., Kim, N. C., Kim, M. Y., Kwon, H. J. and Song, H. K. (2008) Vegetation and soil properties of Corylopsis coreana population in Korea. Korean J. Environ. Ecol. 22: 609-615.
  16. Boo, H., Shin, J., Shin, J., Choung, E., Bang, M., Choi, K. and Song, W. (2012) Assessment on antioxidant potential and enzyme activity of some economic resource plants. Korean Journal of Plant Resources 25: 349-356. https://doi.org/10.7732/kjpr.2012.25.3.349
  17. Han, J. Y., Cho, S. S., Yang, J. H., Kim, K. M., Jang, C. H., Park, D. E., Bang, J. S., Jung, Y. S. and Ki, S. H. (2015) The chalcone compound isosalipurposide (ISPP) exerts a cytoprotective effect against oxidative injury via Nrf2 activation. Toxicol. Appl. Pharmacol. 287: 77-85. https://doi.org/10.1016/j.taap.2015.05.015
  18. Kim, M. H., Ha, S. Y., Oh, M. H., Kim, H. H., Kim, S. R. and Lee, M. W. (2013) Anti-oxidative and anti-proliferative activity on human prostate cancer cells lines of the phenolic compounds from Corylopsis coreana Uyeki. 18: 4876-4886. https://doi.org/10.3390/molecules18054876
  19. 박종희 (2004) 한국약초도감, 636. 신일상사, 서울.
  20. 김창민, 신민교, 안덕균, 이경순 (1997) 중약대사전, 699, 도서출판 정담, 서울.
  21. 중앙대학교 산학협력단 (2014) 히어리 잎 추출물 또는 이로부터 분리된 페놀성 화합물을 유요성분으로 포함하는 항염증 또는 항산화 조성물. 대한민국 특허. 등록번호 1014023710000
  22. Kwon, O. K., Kim, C. S., Suh, W. S., Park, K. J., Cha, J. M., Choi, S. U., Kwon, H. C. and Lee, K. R. (2016) Phenolic compounds from the twigs of Corylopsis coreana Uyeki and their cytotoxic activity. Kor. J. Pharmacogn. 47: 1-6.
  23. Mosmann, T. (1983) Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. . J. Immunol. Methods 65: 55-63. https://doi.org/10.1016/0022-1759(83)90303-4
  24. Israf, D., Khaizurin, T., Syahida, A., Lajis, N. and Khozirah, S. (2007) Cardamonin inhibits COX and iNOS expression via inhibition of $p65NF-{\kappa}B$ nuclear translocation and $I{\kappa}-B$B phosphorylation in RAW 264.7 macrophage cells. Mol. Immunol. 44: 673-679. https://doi.org/10.1016/j.molimm.2006.04.025
  25. Bjarnason, I., Hayllar, J., MacPherson, A. J. and Russell, A. S. (1993) Side effects of nonsteroidal anti-inflammatory drugs on the small and large intestine in humans. Gastroenterology 104: 1832-1847. https://doi.org/10.1016/0016-5085(93)90667-2
  26. Singh, G. and Triadafilopoulos, G. (1999) Epidemiology of NSAID induced gastrointestinal complications. J. Rheumatol. Suppl. 56: 18-24.
  27. Kim, H. P., Son, K. H., Chang, H. W. and Kang, S. S. (2004) Anti-inflammatory plant flavonoids and cellular action mechanisms. J. Pharmacol. Sci. 96: 229-245. https://doi.org/10.1254/jphs.CRJ04003X
  28. Yuan, G., Wahlqvist, M. L., He, G., Yang, M. and Li, D. (2006) Natural products and anti-inflammatory activity. Asia Asia Pac. J. Clin. Nutr. 15: 143.
  29. Moore, P., Babbedge, R., Wallace, P., Gaffen, Z. and Hart, S. (1993) 7-Nitro indazole, an inhibitor of nitric oxide synthase, exhibits anti-nociceptive activity in the mouse without increasing blood pressure. Br. J. Pharmacol. 108: 296-297. https://doi.org/10.1111/j.1476-5381.1993.tb12798.x
  30. Kimura, H., Hokari, R., Miura, S., Shigematsu, T., Hirokawa, M., Akiba, Y., Kurose, I., Higuchi, H., Fujimori, H., Tsuzuki, Y., Serizawa, H. and Ishii, H. (1998) Increased expression of an inducible isoform of nitric oxide synthase and the formation of peroxynitrite in colonic mucosa of patients with active ulcerative colitis. Gut. 42: 180-187. https://doi.org/10.1136/gut.42.2.180
  31. Sawa, T. and Ohshima, H. (2006) Nitrative DNA damage in inflammation and its possible role in carcinogenesis. Nitric Oxide 14: 91-100. https://doi.org/10.1016/j.niox.2005.06.005
  32. Koetzner, L., Gregory, J. A. and Yaksh, T. L. (2004) Intrathecal protease-activated receptor stimulation produces thermal hyperalgesia through spinal cyclooxygenase activity. J. Pharmacol. Exp. Ther. 311: 356-363. https://doi.org/10.1124/jpet.104.069484
  33. Mantovani, A., Allavena, P., Sica, A. and Balkwill, F. (2008) Cancer-related inflammation. Nature 454: 436-444. https://doi.org/10.1038/nature07205
  34. Masferrer, J. L., Zweifel, B. S., Manning, P. T., Hauser, S. D., Leahy, K. M., Smith, W. G., Isakson, P. C. and Seibert, K. (1994) Selective inhibition of inducible cyclooxygenase 2 in vivo is antiinflammatory and nonulcerogenic. Proc. Natl. Acad. Sci. 91: 3228-3232. https://doi.org/10.1073/pnas.91.8.3228
  35. Kawabata, A., Kawao, N., Kuroda, R., Tanaka, A., Itoh, H. and Nishikawa, H. (2001) Peripheral PAR-2 triggers thermal hyperalgesia and nociceptive responses in rats. Neuroreport 12: 715-719. https://doi.org/10.1097/00001756-200103260-00020
  36. Kelso, E. B., Lockhart, J. C., Hembrough, T., Dunning, L., Plevin, R., Hollenberg, M. D., Sommerhoff, C. P., McLean, J. S. and Ferrell, W. R. (2006) Therapeutic promise of proteinase- activated receptor-2 antagonism in joint inflammation. J. Pharmacol. Exp. Ther. 316: 1017-1024.
  37. Vergnolle, N., Hollenberg, M. D., Sharkey, K. A. and Wallace, J. L. (1999) Characterization of the inflammatory response to proteinase-activated receptor-2 (par2)-activating peptides in the rat paw. Br. J. Pharmacol. 127: 1083-1090. https://doi.org/10.1038/sj.bjp.0702634
  38. Gao, X., Guo, M., Zhang, Z., Wang, T., Cao, Y. and Zhang, N. (2015) Bergenin plays an anti-inflammatory role via the modulation of MAPK and NF-${\kappa}B$ signaling pathways in a mouse model of LPS-induced mastitis. Inflammation 38: 1142-1150. https://doi.org/10.1007/s10753-014-0079-8
  39. Shahid, A., Ali, R., Ali, N., Hasan, S. K., Bernwal, P., Afzal, S. M., Vafa, A. and Sultana, S. (2016) Modulatory effects of catechin hydrate against genotoxicity, oxidative stress, inflammation and apoptosis induced by benzo (a) pyrene in mice. Food and Chem. Toxicol. 92: 64-74. https://doi.org/10.1016/j.fct.2016.03.021
  40. Cordero-Herrera, I., Chen, X., Ramos, S. and Devaraj, S. (2015) (-)-Epicatechin attenuates high-glucose-induced inflammation by epigenetic modulation in human monocytes. Eur. J. Nutr. : 1-5 (DOI: 10.1007/s00394-015-1136-2).
  41. Hsu, C., Fang, S. and Yen, G. (2013) Anti-inflammatory effects of phenolic compounds isolated from the flowers of Nymphaea mexicana Zucc. Food & function 4: 1216-1222. https://doi.org/10.1039/c3fo60041f
  42. Tsang, M. S., Jiao, D., Chan, B. C., Hon, K., Leung, P. C., Lau, C., Wong, E. C., Cheng, L., Chan, C. K. and Lam, C. W. (2016) Anti-inflammatory activities of pentaherbs formula, berberine, gallic acid and chlorogenic acid in atopic dermatitis- like skin inflammation. Molecules 21: 519. https://doi.org/10.3390/molecules21040519