DOI QR코드

DOI QR Code

Tea Flavonoids Induced Differentiation of Peripheral Blood-derived Mononuclear Cells into Peripheral Blood-derived Endothelial Progenitor Cells and Suppressed Intracellular Reactive Oxygen Species Level of Peripheral Blood-derived Endothelial Progenitor Cells

  • Received : 2015.09.18
  • Accepted : 2015.11.25
  • Published : 2016.06.30

Abstract

Endothelial dysfunction in atherosclerosis is associated with increasing oxidative stress that could be reversed by antioxidant. Therefore epigallocatechin gallate (EGCG), epicatechin gallate (ECG), epigallocatechin (EGC) and catechin (C) of tea flavonoids were investigated for their roles in regenerating endothelial cell. Peripheral blood mononuclear cells (PB-MNCs) were isolated, plated and cultured in medium with/without treatment of EGCG, ECG, EGC and C. Results showed that among all EGCG, ECG, EGC and C concentrations tested, $12.5{\mu}mol/L$ was not cytotoxic for peripheral blood-derived endothelial progenitor cells (PB-EPCs). Treatment of EGCG, ECG, EGC or C increased the percentages of CD34, CD133, VEGFR-2 expressions and suppressed hydrogen peroxide-induced percentages of reactive oxygen species (ROS) level in PB-EPCs. Taken together, our current results showed that EGCG, ECG, EGC or C of tea flavonoids could induce differentiation of PB-MNCs into PB-EPCs as well as protect PB-EPCs from oxidative damage by suppresing the intracellular ROS levels.

Keywords

References

  1. Bonetti, P. O.; Lerman, L. O.; Lerman, A. Arterioscler. Thromb. Vasc. Biol. 2003, 23, 168-175. https://doi.org/10.1161/01.ATV.0000051384.43104.FC
  2. Higashi, Y.; Noma, K.; Yoshizumi, M.; Kihara, Y. Circ. J. 2009, 73, 411-418. https://doi.org/10.1253/circj.CJ-08-1102
  3. Diaz, M. N.; Frei, B.; Vita, J. A.; Keaney J. F. Jr. N. Engl. J. Med. 1997, 337, 408-416. https://doi.org/10.1056/NEJM199708073370607
  4. Lin, J.; Cook, N. R.; Albert, C.; Zaharris, E.; Gaziano, J. M.; Van Denburgh, M.; Buring, J. E.; Manson, J. E. J. Natl. Cancer Inst. 2009, 101, 14-23. https://doi.org/10.1093/jnci/djn438
  5. Yang, C. S.; Landau, J. M. J. Nutr. 2000, 130, 2409-2412. https://doi.org/10.1093/jn/130.10.2409
  6. Trevisanato, S. I.; Kim, Y. I. Nutr. Rev. 2000, 58, 1-10.
  7. Shenouda, S. M.; Vita, J. A. J. Am. Coll. Nutr. 2007, 26, 366S-372S. https://doi.org/10.1080/07315724.2007.10719625
  8. Grassi, D.; Mulder, T. P.; Draijer, R.; Desideri, G.; Molhuizen, H. O.; Ferri, C. J. Hypertens. 2009, 27, 774-781. https://doi.org/10.1097/HJH.0b013e328326066c
  9. Hertog, M. G.; Feskens, E. J.; Hollman, P. C.; Katan, M. B.; Kromhout, D. Lancet 1993, 342, 1007-1011. https://doi.org/10.1016/0140-6736(93)92876-U
  10. Mukamal, K. J.; Maclure, M.; Muller, J. E.; Sherwood, J. B.; Mittleman, M. A. Circulation 2002, 105, 2476-2481. https://doi.org/10.1161/01.CIR.0000017201.88994.F7
  11. Balentine, D. A.; Wiseman, S. A.; Bouwens, L. C. Crit. Rev. Food Sci. Nutr. 1997, 37, 693-704. https://doi.org/10.1080/10408399709527797
  12. Wolfram, S. J. Am. Coll. Nutr. 2007, 26, 373S-388S. https://doi.org/10.1080/07315724.2007.10719626
  13. Sano, M.; Tabata, M.; Suzuki, M.; Degawa, M.; Miyase, T.; Maeda-Yamamoto, M. Analyst 2001, 126, 816-820. https://doi.org/10.1039/b102541b
  14. Widowati, W.; Widyanto, R. M.; Husin, W.; Ratnawati, H.; Laksmitawati, D. R.; Setiawan, B.; Nugrahenny, D.; Bachtiar. I. Iran J. Basic Med. Sci. 2014, 17, 702-709.
  15. Wollert, K. C.; Drexler, H. Circ. Res. 2005, 96, 151-163. https://doi.org/10.1161/01.RES.0000155333.69009.63
  16. Sagara, Y.; Vanhnasy, J.; Maher, P. J. Neurochem. 2004, 90, 1144- 1155. https://doi.org/10.1111/j.1471-4159.2004.02563.x
  17. Widowati, W.; Sardjono, C. T.; Wijaya, L.; Laksmitawati, D. R.; Sandra, F. J. US-China Med. Sci. 2012, 9, 22-29.
  18. Murphy, T. H.; Miyamoto, M.; Sastre, A.; Schnaar, R. L.; Coyle, J. T. Neuron 1989, 2, 1547-1558. https://doi.org/10.1016/0896-6273(89)90043-3
  19. LeBel, C. P.; Ischiropoulos, H.; Bondy, S. C. Chem. Res. Toxicol. 1992, 5, 227-231. https://doi.org/10.1021/tx00026a012
  20. Jie, G.; Lin, Z.; Zhang, L.; Lv, H.; He, P.; Zhao, B. J. Agric. Food Chem. 2006, 54, 8058-8064. https://doi.org/10.1021/jf061663o
  21. Valko, M.; Leibfritz, D.; Moncol, J.; Cronin, M. T.; Mazur, M.; Telser, J. Int. J. Biochem. Cell Biol. 2007, 39, 44-84. https://doi.org/10.1016/j.biocel.2006.07.001
  22. Evacuasiany, E.; Ratnawati, H.; Liana, L. K.; Widowati, W.; Maesaroh, M.; Mozef, T.; Risdian, C. Oxid. Antioxid. Med. Sci. 2014, 3, 141-146. https://doi.org/10.5455/oams.240614.or.066

Cited by

  1. Preliminary Study: Purple Sweet Potato Extract Seems to Be Superior to Increase the Migration of Impaired Endothelial Progenitor Cells Compared to l-Ascorbic Acid vol.87, pp.3, 2019, https://doi.org/10.3390/scipharm87030016