DOI QR코드

DOI QR Code

Ahcyl2 upregulates NBCe1-B via multiple serine residues of the PEST domain-mediated association

  • Park, Pil Whan (Department of Laboratory Medicine, Gachon University Gil Hospital) ;
  • Ahn, Jeong Yeal (Department of Laboratory Medicine, Gachon University Gil Hospital) ;
  • Yang, Dongki (Department of Physiology, College of Medicine, Gachon University)
  • Received : 2016.04.25
  • Accepted : 2016.05.31
  • Published : 2016.07.01

Abstract

Inositol-1,4,5-triphosphate [$IP_3$] receptors binding protein released with $IP_3$ (IRBIT) was previously reported as an activator of NBCe1-B. Recent studies have characterized IRBIT homologue S-Adenosylhomocysteine hydrolase-like 2 (AHCYL2). AHCYL2 is highly homologous to IRBIT (88%) and heteromerizes with IRBIT. The two important domains in the N-terminus of AHCYL2 are a PEST domain and a coiled-coil domain which are highly comparable to those in IRBIT. Therefore, in this study, we tried to identify the role of those domains in mouse AHCYL2 (Ahcyl2), and we succeeded in identifying PEST domain of Ahcyl2 as a regulation region for NBCe1-B activity. Site directed mutagenesis and coimmunoprecipitation assay showed that NBCe1-B binds to the N-terminal Ahcyl2-PEST domain, and its binding is determined by the phosphorylation of 4 critical serine residues (Ser151, Ser154, Ser157, and Ser160) in Ahcyl2 PEST domain. Also we revealed that 4 critical serine residues in Ahcyl2 PEST domain are indispensable for the activation of NBCe1-B using measurement of intracellular pH experiment. Thus, these results suggested that the NBCe1-B is interacted with 4 critical serine residues in Ahcyl2 PEST domain, which play an important role in intracellular pH regulation through NBCe1-B.

Keywords

References

  1. Durie PR. The pathophysiology of the pancreatic defect in cystic fibrosis. Acta Paediatr Scand Suppl. 1989;363:41-44.
  2. Baron JH. The pancreas. Mt Sinai J Med. 2000;67:68-75.
  3. Steward MC, Ishiguro H, Case RM. Mechanisms of bicarbonate secretion in the pancreatic duct. Annu Rev Physiol. 2005;67:377-409. https://doi.org/10.1146/annurev.physiol.67.031103.153247
  4. Ishiguro H, Steward MC, Lindsay AR, Case RM. Accumulation of intracellular ${HCO_3}^-$ by $Na^+$-${HCO_3}^-$ cotransport in interlobular ducts from guinea-pig pancreas. J Physiol. 1996;495:169-178. https://doi.org/10.1113/jphysiol.1996.sp021582
  5. Zhao H, Star RA, Muallem S. Membrane localization of $H^+$ and ${HCO_3}^-$ transporters in the rat pancreatic duct. J Gen Physiol. 1994; 104:57-85. https://doi.org/10.1085/jgp.104.1.57
  6. Abuladze N, Lee I, Newman D, Hwang J, Boorer K, Pushkin A, Kurtz I. Molecular cloning, chromosomal localization, tissue distribution, and functional expression of the human pancreatic sodium bicarbonate cotransporter. J Biol Chem. 1998;273:17689-17695. https://doi.org/10.1074/jbc.273.28.17689
  7. Choi JY, Muallem D, Kiselyov K, Lee MG, Thomas PJ, Muallem S. Aberrant CFTR-dependent ${HCO_3}^-$ transport in mutations associated with cystic fibrosis. Nature. 2001;410:94-97. https://doi.org/10.1038/35065099
  8. Ko SB, Shcheynikov N, Choi JY, Luo X, Ishibashi K, Thomas PJ, Kim JY, Kim KH, Lee MG, Naruse S, Muallem S. A molecular mechanism for aberrant CFTR-dependent ${HCO_3}^-$ transport in cystic fibrosis. EMBO J. 2002;21:5662-5672. https://doi.org/10.1093/emboj/cdf580
  9. Lee MG, Choi JY, Luo X, Strickland E, Thomas PJ, Muallem S. Cystic fibrosis transmembrane conductance regulator regulates luminal $Cl^-$/${HCO_3}^-$ exchange in mouse submandibular and pancreatic ducts. J Biol Chem. 1999;274:14670-14677. https://doi.org/10.1074/jbc.274.21.14670
  10. Ko SB, Zeng W, Dorwart MR, Luo X, Kim KH, Millen L, Goto H, Naruse S, Soyombo A, Thomas PJ, Muallem S. Gating of CFTR by the STAS domain of SLC26 transporters. Nat Cell Biol. 2004;6:343-350. https://doi.org/10.1038/ncb1115
  11. Shcheynikov N, Ko SB, Zeng W, Choi JY, Dorwart MR, Thomas PJ, Muallem S. Regulatory interaction between CFTR and the SLC26 transporters. Novartis Found Symp. 2006;273:177-186; discussion 186-192, 261-264.
  12. Wang Y, Soyombo AA, Shcheynikov N, Zeng W, Dorwart M, Marino CR, Thomas PJ, Muallem S. Slc26a6 regulates CFTR activity in vivo to determine pancreatic duct ${HCO_3}^-$ secretion: relevance to cystic fibrosis. EMBO J. 2006;25:5049-5057. https://doi.org/10.1038/sj.emboj.7601387
  13. Dorwart MR, Shcheynikov N, Yang D, Muallem S. The solute carrier 26 family of proteins in epithelial ion transport. Physiology (Bethesda). 2008;23:104-114. https://doi.org/10.1152/physiol.00037.2007
  14. Ando H, Mizutani A, Matsu-ura T, Mikoshiba K. IRBIT, a novel inositol 1,4,5-trisphosphate ($IP_3$) receptor-binding protein, is released from the $IP_3$ receptor upon $IP_3$ binding to the receptor. J Biol Chem. 2003;278:10602-10612. https://doi.org/10.1074/jbc.M210119200
  15. Shirakabe K, Priori G, Yamada H, Ando H, Horita S, Fujita T, Fujimoto I, Mizutani A, Seki G, Mikoshiba K. IRBIT, an inositol 1,4,5-trisphosphate receptor-binding protein, specifically binds to and activates pancreas-type $Na^+$/${HCO_3}^-$ cotransporter 1 (pNBC1). Proc Natl Acad Sci U S A . 2006;103:9542-9547. https://doi.org/10.1073/pnas.0602250103
  16. Ando H, Mizutani A, Kiefer H, Tsuzurugi D, Michikawa T, Mikoshiba K. IRBIT suppresses $IP_3$ receptor activity by competing with $IP_3$ for the common binding site on the $IP_3$ receptor. Mol Cell. 2006;22:795-806. https://doi.org/10.1016/j.molcel.2006.05.017
  17. Devogelaere B, Beullens M, Sammels E, Derua R, Waelkens E, van Lint J, Parys JB, Missiaen L, Bollen M, De Smedt H. Protein phosphatase-1 is a novel regulator of the interaction between IRBIT and the inositol 1,4,5-trisphosphate receptor. Biochem J. 2007;407:303-311. https://doi.org/10.1042/BJ20070361
  18. Devogelaere B, Sammels E, De Smedt H. The IRBIT domain adds new functions to the AHCY family. Bioessays. 2008;30:642-652. https://doi.org/10.1002/bies.20772
  19. Hong JH, Yang D, Shcheynikov N, Ohana E, Shin DM, Muallem S. Convergence of IRBIT, phosphatidylinositol (4,5) bisphosphate, and WNK/SPAK kinases in regulation of the $Na^+$-${HCO_3}^-$ cotransporters family. Proc Natl Acad Sci U S A. 2013;110:4105-4110. https://doi.org/10.1073/pnas.1221410110
  20. Yang D, Shcheynikov N, Zeng W, Ohana E, So I, Ando H, Mizutani A, Mikoshiba K, Muallem S. IRBIT coordinates epithelial fluid and ${HCO_3}^-$ secretion by stimulating the transporters pNBC1 and CFTR in the murine pancreatic duct. J Clin Invest. 2009;119:193-202.
  21. Yamaguchi S, Ishikawa T. AHCYL2 (long-IRBIT) as a potential regulator of the electrogenic $Na^+$-${HCO_3}^-$ cotransporter NBCe1-B. FEBS Lett. 2014;588:672-677. https://doi.org/10.1016/j.febslet.2013.12.036
  22. Ando H, Mizutani A, Mikoshiba K. An IRBIT homologue lacks binding activity to inositol 1,4,5-trisphosphate receptor due to the unique N-terminal appendage. J Neurochem. 2009;109:539-550. https://doi.org/10.1111/j.1471-4159.2009.05979.x
  23. Yang D, Li Q, So I, Huang CL, Ando H, Mizutani A, Seki G, Mikoshiba K, Thomas PJ, Muallem S. IRBIT governs epithelial secretion in mice by antagonizing the WNK/SPAK kinase pathway. J Clin Invest . 2011;121:956-965. https://doi.org/10.1172/JCI43475

Cited by

  1. Splicing variation of Long-IRBIT determines the target selectivity of IRBIT family proteins vol.114, pp.15, 2016, https://doi.org/10.1073/pnas.1618514114
  2. Expression of the B splice variant of NBCe1 (SLC4A4) in the mouse kidney vol.315, pp.3, 2018, https://doi.org/10.1152/ajprenal.00515.2017
  3. Integrated Transcriptomic Analysis Reveals the Molecular Mechanism of Meningiomas by Weighted Gene Coexpression Network Analysis vol.2020, pp.None, 2016, https://doi.org/10.1155/2020/4927547
  4. Both IRBIT and long-IRBIT bind to and coordinately regulate Cl−/HCO3− exchanger AE2 activity through modulating the lysosomal degradation of AE2 vol.11, pp.1, 2021, https://doi.org/10.1038/s41598-021-85499-6