DOI QR코드

DOI QR Code

Facilitation of AMPA receptor-mediated steady-state current by extrasynaptic NMDA receptors in supraoptic magnocellular neurosecretory cells

  • Pai, Yoon Hyoung (Department of Physiology, Brain Research Institute, School of Medicine, Chungnam National University) ;
  • Lim, Chae Seong (Department of Anesthesiology & Pain Medicine, Brain Research Institute, School of Medicine, Chungnam National University) ;
  • Park, Kyung-Ah (Department of Physiology, Brain Research Institute, School of Medicine, Chungnam National University) ;
  • Cho, Hyun Sil (Department of Physiology, Brain Research Institute, School of Medicine, Chungnam National University) ;
  • Lee, Gyu-Seung (Department of Physiology, Brain Research Institute, School of Medicine, Chungnam National University) ;
  • Shin, Yong Sup (Department of Anesthesiology & Pain Medicine, Brain Research Institute, School of Medicine, Chungnam National University) ;
  • Kim, Hyun-Woo (Department of Physiology, Brain Research Institute, School of Medicine, Chungnam National University) ;
  • Jeon, Byeong Hwa (Department of Physiology, Brain Research Institute, School of Medicine, Chungnam National University) ;
  • Yoon, Seok Hwa (Department of Anesthesiology & Pain Medicine, Brain Research Institute, School of Medicine, Chungnam National University) ;
  • Park, Jin Bong (Department of Physiology, Brain Research Institute, School of Medicine, Chungnam National University)
  • Received : 2016.03.28
  • Accepted : 2016.06.09
  • Published : 2016.07.01

Abstract

In addition to classical synaptic transmission, information is transmitted between cells via the activation of extrasynaptic receptors that generate persistent tonic current in the brain. While growing evidence supports the presence of tonic NMDA current ($I_{NMDA}$) generated by extrasynaptic NMDA receptors (eNMDARs), the functional significance of tonic $I_{NMDA}$ in various brain regions remains poorly understood. Here, we demonstrate that activation of eNMDARs that generate INMDA facilitates the ${\alpha}$-amino-3-hydroxy-5-methylisoxazole-4-proprionate receptor (AMPAR)-mediated steady-state current in supraoptic nucleus (SON) magnocellular neurosecretory cells (MNCs). In $low-Mg^{2+}$ artificial cerebrospinal fluid (aCSF), glutamate induced an inward shift in $I_{holding}$ ($I_{GLU}$) at a holding potential ($V_{holding}$) of -70 mV which was partly blocked by an AMPAR antagonist, NBQX. NBQX-sensitive $I_{GLU}$ was observed even in normal aCSF at $V_{holding}$ of -40 mV or -20 mV. $I_{GLU}$ was completely abolished by pretreatment with an NMDAR blocker, AP5, under all tested conditions. AMPA induced a reproducible inward shift in $I_{holding}$ ($I_{AMPA}$) in SON MNCs. Pretreatment with AP5 attenuated $I_{AMPA}$ amplitudes to ~60% of the control levels in $low-Mg^{2+}$ aCSF, but not in normal aCSF at $V_{holding}$ of -70 mV. $I_{AMPA}$ attenuation by AP5 was also prominent in normal aCSF at depolarized holding potentials. Memantine, an eNMDAR blocker, mimicked the AP5-induced $I_{AMPA}$ attenuation in SON MNCs. Finally, chronic dehydration did not affect $I_{AMPA}$ attenuation by AP5 in the neurons. These results suggest that tonic $I_{NMDA}$, mediated by eNMDAR, facilitates AMPAR function, changing the postsynaptic response to its agonists in normal and osmotically challenged SON MNCs.

Keywords

References

  1. Farrant M, Nusser Z. Variations on an inhibitory theme: phasic and tonic activation of GABA(A) receptors. Nat Rev Neurosci. 2005;6:215-229. https://doi.org/10.1038/nrn1625
  2. Makani S, Zagha E. Out of the cleft: the source and target of extrasynaptic glutamate in the CA1 region of the hippocampus. J Physiol. 2007;582:479-480. https://doi.org/10.1113/jphysiol.2007.137059
  3. Pandit S, Jo JY, Lee SU, Lee YJ, Lee SY, Ryu PD, Lee JU, Kim HW, Jeon BH, Park JB. Enhanced astroglial GABA uptake attenuates tonic GABAA inhibition of the presympathetic hypothalamic paraventricular nucleus neurons in heart failure. J Neurophysiol. 2015;114:914-926. https://doi.org/10.1152/jn.00080.2015
  4. Potapenko ES, Biancardi VC, Zhou Y, Stern JE. Altered astrocyte glutamate transporter regulation of hypothalamic neurosecretory neurons in heart failure rats. Am J Physiol Regul Integr Comp Physiol. 2012;303:R291-300. https://doi.org/10.1152/ajpregu.00056.2012
  5. Dalby No, Mody I. Activation of NMDA receptors in rat dentate gyrus granule cells by spontaneous and evoked transmitter release. J Neurophysiol. 2003;90:786-797. https://doi.org/10.1152/jn.00118.2003
  6. Fleming TM, Scott V, Naskar K, Joe N, Brown CH, Stern JE. State-dependent changes in astrocyte regulation of extrasynaptic NMDA receptor signalling in neurosecretory neurons. J Physiol. 2011;589:3929-3941. https://doi.org/10.1113/jphysiol.2011.207340
  7. Le Meur K, Galante M, Angulo MC, Audinat E. Tonic activation of NMDA receptors by ambient glutamate of non-synaptic origin in the rat hippocampus. J Physiol. 2007;580:373-383. https://doi.org/10.1113/jphysiol.2006.123570
  8. Sah P, Hestrin S, Nicoll RA. Tonic activation of NMDA receptors by ambient glutamate enhances excitability of neurons. Science. 1989;246:815-818. https://doi.org/10.1126/science.2573153
  9. Hardingham GE, Fukunaga Y, Bading H. Extrasynaptic NMDARs oppose synaptic NMDARs by triggering CREB shut-off and cell death pathways. Nat Neurosci. 2002;5:405-414. https://doi.org/10.1038/nn835
  10. Ivanov A, Pellegrino C, Rama S, Dumalska I, Salyha Y, Ben-Ari Y, Medina I. Opposing role of synaptic and extrasynaptic NMDA receptors in regulation of the extracellular signal-regulated kinases (ERK) activity in cultured rat hippocampal neurons. J Physiol. 2006;572:789-798. https://doi.org/10.1113/jphysiol.2006.105510
  11. okamoto S, Pouladi MA, Talantova M, Yao D, Xia P, Ehrnhoefer DE, Zaidi R, Clemente A, Kaul M, Graham RK, Zhang D, Vincent Chen HS, Tong G, Hayden MR, Lipton SA. Balance between synaptic versus extrasynaptic NMDA receptor activity influences inclusions and neurotoxicity of mutant huntingtin. Nat Med. 2009;15:1407-1413. https://doi.org/10.1038/nm.2056
  12. Pougnet JT, Toulme E, Martinez A, Choquet D, Hosy E, Boue-Grabot E. ATP P2X receptors downregulate AMPA receptor trafficking and postsynaptic efficacy in hippocampal neurons. Neuron. 2014;83:417-430. https://doi.org/10.1016/j.neuron.2014.06.005
  13. Ferreira-Neto HC, Antunes VR, Stern JE. ATP stimulates rat hypothalamic sympathetic neurons by enhancing AMPA receptormediated currents. J Neurophysiol. 2015;114:159-169. https://doi.org/10.1152/jn.01011.2014
  14. Gordon GR, Baimoukhametova DV, Hewitt SA, Rajapaksha WR, Fisher TE, Bains JS. Norepinephrine triggers release of glial ATP to increase postsynaptic efficacy. Nat Neurosci. 2005;8:1078-1086. https://doi.org/10.1038/nn1498
  15. Silverman AJ, Zimmerman EA. Magnocellular neurosecretory system. Annu Rev Neurosci. 1983;6:357-380. https://doi.org/10.1146/annurev.ne.06.030183.002041
  16. van den Pol AN, Wuarin JP, Dudek FE. Glutamate, the dominant excitatory transmitter in neuroendocrine regulation. Science. 1990;250:1276-1278. https://doi.org/10.1126/science.1978759
  17. Park JB, Skalska S, Stern JE. Characterization of a novel tonic gamma-aminobutyric acidA receptor-mediated inhibition in magnocellular neurosecretory neurons and its modulation by glia. Endocrinology. 2006;147:3746-3760. https://doi.org/10.1210/en.2006-0218
  18. Jeong JA, Kim EJ, Jo JY, Song JG, Lee KS, Kim HW, Lee SD, Jeon BH, Lee JU, Park JB. Major role of GABA(A)-receptor mediated tonic inhibition in propofol suppression of supraoptic magnocellular neurons. Neurosci Lett. 2011;494:119-123. https://doi.org/10.1016/j.neulet.2011.02.072
  19. Jo JY, Jeong JA, Pandit S, Stern JE, Lee SK, Ryu PD, Lee SY, Han SK, Cho CH, Kim HW, Jeon BH, Park JB. Neurosteroid modulation of benzodiazepine-sensitive GABAA tonic inhibition in supraoptic magnocellular neurons. Am J Physiol Regul Integr Comp Physiol. 2011;300:R1578-1587. https://doi.org/10.1152/ajpregu.00627.2010
  20. Park JB, Skalska S, Son S, Stern JE. Dual GABAA receptor-mediated inhibition in rat presympathetic paraventricular nucleus neurons. J Physiol. 2007;582:539-551. https://doi.org/10.1113/jphysiol.2007.133223
  21. Lipton SA. Paradigm shift in neuroprotection by NMDA receptor blockade: memantine and beyond. Nat Rev Drug Discov. 2006;5:160-170. https://doi.org/10.1038/nrd1958
  22. Papadia S, Soriano FX, Leveille F, Martel MA, Dakin KA, Hansen HH, Kaindl A, Sifringer M, Fowler J, Stefovska V, McKenzie G, Craigon M, Corriveau R, Ghazal P, Horsburgh K, Yankner BA, Wyllie DJ, Ikonomidou C, Hardingham GE. Synaptic NMDA receptor activity boosts intrinsic antioxidant defenses. Nat Neurosci. 2008;11:476-487. https://doi.org/10.1038/nn2071
  23. Di S, Tasker JG. Dehydration-induced synaptic plasticity in magnocellular neurons of the hypothalamic supraoptic nucleus. Endocrinology. 2004;145:5141-5149. https://doi.org/10.1210/en.2004-0702
  24. Papouin T, Oliet SH. Organization, control and function of extrasynaptic NMDA receptors. Philos Trans R Soc Lond B Biol Sci. 2014;369:20130601. https://doi.org/10.1098/rstb.2013.0601
  25. Papouin T, Ladepeche L, Ruel J, Sacchi S, Labasque M, Hanini M, Groc L, Pollegioni L, Mothet JP, Oliet SH. Synaptic and extrasynaptic NMDA receptors are gated by different endogenous coagonists. Cell. 2012;150:633-646. https://doi.org/10.1016/j.cell.2012.06.029
  26. Borgdorff AJ, Choquet D. Regulation of AMPA receptor lateral movements. Nature. 2002;417:649-653. https://doi.org/10.1038/nature00780
  27. Bredt DS, Nicoll RA. AMPA receptor trafficking at excitatory synapses. Neuron. 2003;40:361-379. https://doi.org/10.1016/S0896-6273(03)00640-8
  28. Choquet D, Triller A. The role of receptor diffusion in the organization of the postsynaptic membrane. Nat Rev Neurosci. 2003;4:251-265.
  29. Malinow R, Malenka RC. AMPA receptor trafficking and synaptic plasticity. Annu Rev Neurosci. 2002;25:103-126. https://doi.org/10.1146/annurev.neuro.25.112701.142758
  30. Derkach V, Barria A, Soderling TR. $Ca^{2+}$/calmodulin-kinase II enhances channel conductance of alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionate type glutamate receptors. Proc Natl Acad Sci U S A. 1999;96:3269-3274. https://doi.org/10.1073/pnas.96.6.3269
  31. Fukunaga K, Stoppini L, Miyamoto E, Muller D. Longterm potentiation is associated with an increased activity of $Ca^{2+}$/calmodulin-dependent protein kinase II. J Biol Chem. 1993;268:7863-7867.
  32. Theodosis DT, Poulain DA. Activity-dependent neuronalglial and synaptic plasticity in the adult mammalian hypothalamus. Neuroscience. 1993;57:501-535. https://doi.org/10.1016/0306-4522(93)90002-W
  33. Oliet SH, Piet R, Poulain DA. Control of glutamate clearance and synaptic efficacy by glial coverage of neurons. Science. 2001;292:923-926. https://doi.org/10.1126/science.1059162
  34. Angulo MC, Kozlov AS, Charpak S, Audinat E. Glutamate released from glial cells synchronizes neuronal activity in the hippocampus. J Neurosci. 2004;24:6920-6927. https://doi.org/10.1523/JNEUROSCI.0473-04.2004
  35. Fellin T, Pascual O, Gobbo S, Pozzan T, Haydon PG, Carmignoto G. Neuronal synchrony mediated by astrocytic glutamate through activation of extrasynaptic NMDA receptors. Neuron. 2004;43:729-743. https://doi.org/10.1016/j.neuron.2004.08.011
  36. Fiacco TA, McCarthy KD. Intracellular astrocyte calcium waves in situ increase the frequency of spontaneous AMPA receptor currents in CA1 pyramidal neurons. J Neurosci. 2004;24:722-732. https://doi.org/10.1523/JNEUROSCI.2859-03.2004
  37. Liu QS, Xu Q, Arcuino G, Kang J, Nedergaard M. Astrocytemediated activation of neuronal kainate receptors. Proc Natl Acad Sci U S A. 2004;101:3172-3177. https://doi.org/10.1073/pnas.0306731101
  38. Tardin C, Cognet L, Bats C, Lounis B, Choquet D. Direct imaging of lateral movements of AMPA receptors inside synapses. EMBO J. 2003;22:4656-4665. https://doi.org/10.1093/emboj/cdg463

Cited by

  1. Involvement of extrasynaptic glutamate in physiological and pathophysiological changes of neuronal excitability vol.75, pp.16, 2016, https://doi.org/10.1007/s00018-018-2837-5
  2. Astrocytic modulation of glutamatergic synaptic transmission is reduced in NTS of rats submitted to short-term sustained hypoxia vol.121, pp.5, 2016, https://doi.org/10.1152/jn.00279.2018