Acknowledgement
Supported by : Centre National d'Etudes Spatiales (CNES)
References
- Barbarulo, A., Ladeveze, P., Riou, H. and Kovalevsky, L. (2014), "Proper generalized decomposition applied to linear acoustic: a new tool for broad band calculation", J. Sound Vib., 333(11), 2422-2431. https://doi.org/10.1016/j.jsv.2014.01.014
- Bouillard, P., Suleaub, S. and Suleau, S. (1998), "Element-free galerkin solutions for helmholtz problems: formulation and numerical assessment of the pollution effect", Comput. Meth. Appl. Mech. Eng., 162(14), 317-335. https://doi.org/10.1016/S0045-7825(97)00350-2
- Cattabiani, A., Riou, H., Barbarulo, A., Ladeveze, P., Bezier, G. and Troclet, B. (2015), "The Variational Theory of Complex Rays applied to the shallow shell theory", Comput. Struct., 158, 98-107. https://doi.org/10.1016/j.compstruc.2015.05.021
- Cessenat, O. and Despres, B. (1998), "Application of an ultra weak variational formulation of elliptic PDEs to the two-dimensional Helmholtz problem", SIAM J. Numer. Anal., 35(1), 255-299. https://doi.org/10.1137/S0036142995285873
- Chevreuil, M., Ladeveze, P. and Rouch, P. (2007), "Transient analysis including the low- and the medium-frequency ranges of engineering structures", Comput. Struct., 85(17-18), 1431-1444. https://doi.org/10.1016/j.compstruc.2006.08.091
- De Rosa, S. and Franco, F. (2010), "On the use of the asymptotic scaled modal analysis for time-harmonic structural analysis and for the prediction of coupling loss factors for similar systems", Mech. Syst. Signal Pr., 24(2), 455-480. https://doi.org/10.1016/j.ymssp.2009.07.008
- Deraemaeker, A. (1999), "Dispersion and pollution of the FEM solution for the Helmholtz equation in one, two and three dimensions", Int. J. Numer. Meth. Eng., 46(4), 471-499. https://doi.org/10.1002/(SICI)1097-0207(19991010)46:4<471::AID-NME684>3.0.CO;2-6
- Desmet, W., Van Hal, B., Sas, P., Vandepitte, D. and Hal, B.V. (2002), "A computationally efficient prediction technique for the steady-state dynamic analysis of coupled vibro-acoustic systems", Adv. Eng. Softw., 33(7), 527-540. https://doi.org/10.1016/S0965-9978(02)00062-5
- Farhat, C. and Roux, F.X. (1991), "A method of finite element tearing and interconnecting and its parallel solution algorithm", Int. J. Numer. Meth. Eng., 32(6), 1205-1227. https://doi.org/10.1002/nme.1620320604
- Farhat, C., Harari, I. and Franca, L.P. (2001), "The discontinuous enrichment method", Comput. Meth. Appl. Mech. Eng., 190, 6455-6479. https://doi.org/10.1016/S0045-7825(01)00232-8
- Genechten, B.V., Vandepitte, D. and Desmet, W. (2011), "A direct hybrid finite element wave based modelling technique for efficient coupled vibro-acoustic analysis", Comput. Meth. Appl. Mech. Eng., 200(5), 742-764. https://doi.org/10.1016/j.cma.2010.09.017
- Hall, W. S. (1994), Boundary Element Method, Springer.
- Hughes, T.J.R. (2012), The finite element method: linear static and dynamic finite element analysis, Courier Dover Publications.
- Ihlenburg, F. (1998), Finite Element Analysis of Acoustic Scattering, Springer.
- Kovalevsky, L., Ladeveze, P., Riou, H. and Bonnet, M. (2012), "The variational theory of complex rays for three-dimensional helmholtz problems", J. Comput. Acoust., 20(4), 1-25.
- Kovalevsky, L., Riou, H. and Ladeveze, P. (2014), "A Trefftz approach for medium-frequency vibrations of orthotropic structures", Comput. Struct., 143, 85-90. https://doi.org/10.1016/j.compstruc.2014.07.011
- Ladeveze, P. and Riou, H. (2005), "Calculation of medium-frequency vibrations over a wide frequency range", Comput. Meth. Appl. Mech. Eng., 194(27-29), 3167-3191. https://doi.org/10.1016/j.cma.2004.08.009
- Ladeveze, P., Arnaud, L., Rouch, P. and Blanze, C. (2001), "The variational theory of complex rays for the calculation of medium-frequency vibrations", Eng. Comput., 18(1-2), 193-214. https://doi.org/10.1108/02644400110365879
- Ladeveze, P., Rouch, P., Riou, H. and Bohineust, X. (2003), "Analysis of medium-frequency vibrations in a frequency range", J. Comput. Acoust., 11(2), 255-283. https://doi.org/10.1142/S0218396X0300195X
- Liu, Y. (2009), Fast Multipole Boundary Element Method: Theory and Applications in Engineering, Cambridge, University Press.
- Lyon, R.H. (1975), Statistical Energy Analysis of Dynamical Systems: Theory and Applications, MIT Press Cambridge, MA.
- Mace, B. (2003), "Statistical energy analysis, energy distribution models and system modes", J. Sound Vib., 264(2), 391-409. https://doi.org/10.1016/S0022-460X(02)01201-4
- Monk, P. and Wang, D.Q.Q. (1999), "A least-squares method for the helmholtz equation", Comput. Meth. Appl. Mech. Eng., 175(1), 121-136. https://doi.org/10.1016/S0045-7825(98)00326-0
- Perrey-Debain, E., Trevelyan, J. and Bettess, P. (2004), "Wave boundary elements: a theoretical overview presenting applications in scattering of short waves", Eng. Anal. Bound. Elem., 28, 131-141. https://doi.org/10.1016/S0955-7997(03)00127-9
- Riou, H., Ladevèze, P. and Rouch, P. (2004), "Extension of the variational theory of complex rays to shells for medium-frequency vibrations", J. Sound Vib., 272(1), 341-360. https://doi.org/10.1016/S0022-460X(03)00775-2
- Soize, C. (1998), "Reduced models in the medium frequency range for general external structural-acoustics Systems", J. Acoust. Soc. Am., 103(6), 3393-3406. https://doi.org/10.1121/1.423052
- Strouboulis, T. and Hidajat, R. (2006), "Partition of unity method for Helmholtz equation: q-convergence for plane-wave and wave-band local bases", Appl. Math., 51(2), 181-204. https://doi.org/10.1007/s10492-006-0011-0
- Tezaur, R., Kalashnikova, I. and Farhat, C. (2014), "The discontinuous enrichment method for medium- frequency Helmholtz problems with a spatially variable wavenumber", Comput. Meth. Appl. Mech. Eng., 268, 126-140. https://doi.org/10.1016/j.cma.2013.08.017
- van der Heijden, A.M.A. (2009), WT Koiter's Elastic Stability of Solids and Structures, Cambridge University Press Cambridge.
- Ventsel, E. and Krauthammer, T. (2001), Thin Plates and Shells: Theory, Analysis, and Applications, CRC press, Basel.