DOI QR코드

DOI QR Code

BOUNDEDNESS IN FUNCTIONAL DIFFERENTIAL SYSTEMS VIA t-SIMILARITY

  • 투고 : 2016.01.22
  • 심사 : 2016.05.09
  • 발행 : 2016.05.15

초록

In this paper, we show that the solutions to perturbed functional differential system $$y^{\prime}=f(t,y)+{\int_{t_0}^{t}}g(s,y(s),Ty(s))ds$$, have a bounded properties. To show the bounded properties, we impose conditions on the perturbed part ${\int_{t_0}^{t}}g(s,y(s),Ty(s))ds$ and on the fundamental matrix of the unperturbed system y' = f(t, y) using the notion of $t_{\infty}$-similarity.

키워드

참고문헌

  1. V. M. Alekseev, An estimate for the perturbations of the solutions of ordinary differential equations, Vestn. Mosk. Univ. Ser. I. Math. Mekh. 2 (1961), 28-36(Russian).
  2. F. Brauer, Perturbations of nonlinear systems of differential equations, J. Math. Anal. Appl. 14 (1966), 198-206. https://doi.org/10.1016/0022-247X(66)90021-7
  3. S. I. Choi, D. M. Im, and Y. H. Goo, Boundedness in perturbed functional differential systems, J. Appl. Math. and Informatics 32 (2014), 697-705. https://doi.org/10.14317/jami.2014.697
  4. S. K. Choi and H. S. Ryu, h-stability in differential systems, Bull. Inst. Math. Acad. Sinica 21 (1993), 245-262.
  5. S. K. Choi, N. J. Koo, and H. S. Ryu, h-stability of differential systems via $t_{\infty}$-similarity, Bull. Korean Math. Soc. 34 (1997), 371-383.
  6. R. Conti, Sulla $t_{\infty}$-similitudine tra matricie l'equivalenza asintotica dei sistemi differenziali lineari, Rivista di Mat. Univ. Parma 8 (1957), 43-47.
  7. Y. H. Goo, Boundedness in the perturbed differential systems, J. Korean Soc. Math. Edu. Ser. B: Pure Appl. Math. 20 (2013), 223-232.
  8. Y. H. Goo, Boundedness in the perturbed nonlinear differential systems, Far East J. Math. Sci(FJMS) 79 (2013), 205-217.
  9. Y. H. Goo, Boundedness in the nonlinear functional perturbed differential systems via $t_{\infty}$-similarity, Far East J. Math. Sci(FJMS)(submitted).
  10. Y. H. Goo, Uniform Lipschitz stability and asymptotic property of perturbed nonlinear systems, Far East J. Math. Sci(FJMS)(submitted).
  11. Y . H. Goo and S. B. Yang, h-stability of the nonlinear perturbed differential systems via $t_{\infty}$-similarity, J. Chungcheong Math. Soc. 24 (2011), 695-702.
  12. G. A. Hewer, Stability properties of the equation by $t_{\infty}$-similarity, J. Math. Anal. Appl. 41 (1973), 336-344. https://doi.org/10.1016/0022-247X(73)90209-6
  13. D. M. Im, S. I. Choi, and Y. H. Goo, Boundedness in the perturbed functional differential systems, J. Chungcheong Math. Soc. 27 (2014), 479-487. https://doi.org/10.14403/jcms.2014.27.3.479
  14. V. Lakshmikantham and S. Leela, Differential and Integral Inequalities: Theory and Applications Vol., Academic Press, New York and London, 1969.
  15. B. G. Pachpatte, Stability and asymptotic behavior of perturbed nonlinear systems, J. Diff. Equations 16 (1974), 14-25. https://doi.org/10.1016/0022-0396(74)90025-4
  16. B. G. Pachpatte, Perturbations of nonlinear systems of differential equations, J. Math. Anal. Appl. 51 (1975), 550-556. https://doi.org/10.1016/0022-247X(75)90106-7
  17. M. Pinto, Perturbations of asymptotically stable differential systems, Analysis 4 (1984), 161-175.
  18. M. Pinto, Stability of nonlinear differential systems, Applicable Analysis 43 (1992), 1-20. https://doi.org/10.1080/00036819208840049

피인용 문헌

  1. BOUNDEDNESS FOR NONLINEAR PERTURBED FUNCTIONAL DIFFERENTIAL SYSTEMS VIA t-SIMILARITY vol.29, pp.4, 2016, https://doi.org/10.14403/jcms.2016.29.4.585
  2. BOUNDEDNESS IN FUNCTIONAL PERTURBED DIFFERENTIAL SYSTEMS VIA t-SIMILARITY vol.30, pp.3, 2016, https://doi.org/10.14403/jcms.2017.30.3.291