DOI QR코드

DOI QR Code

STOCHASTIC DIFFERENTIAL EQUATION FOR WHITE NOISE FUNCTIONALS

  • Ji, Un Cig (Department of Mathematics Chungbuk National University)
  • 투고 : 2015.01.15
  • 심사 : 2016.05.09
  • 발행 : 2016.05.15

초록

Within white noise approach, we study the existence and uniqueness of the solution of an initial value problem for generalized white noise functionals, and then as a corollary we discuss the linear stochastic differential equation associated with a convolution of white noise functionals.

키워드

참고문헌

  1. M. Ben Chrouda, M. El Oued, and H. Ouerdiane, Convolution calculus and applications to stochastic differential equations, Soochow J. Math. 28 (2002), 375-388.
  2. W. G. Cochran, H.-H. Kuo, and A. Sengupta, A new class of white noise generalized functions, Infin. Dimens. Anal. Quantum Probab. Relat. Top. 1 (1998), 43-67. https://doi.org/10.1142/S0219025798000053
  3. P. Hartman, Ordinary Differential Equations (second edition), Birkhauser, 1982.
  4. T. Hida, Analysis of Brownian Functionals, Carleton Math. Lect. Notes 3, 241-272.
  5. T. Hida, H.-H. Kuo, J. Potthoff, and L. Streit, White Noise: An Infinite Dimensional Calculus, Kluwer Academic Publishers, 1993.
  6. H. Holden, B. Oksendal, J. Uboe, and T. Zhang, Stochastic Partial Differential Equations, Birkhauser, 1996.
  7. M. K. Im, U. C. Ji, and Y. J. Park, Relations among the first variation, the convolutions and the generalized Fourier-Gauss transforms, Bull. Korean Math. Soc. 48 (2011), 291-302. https://doi.org/10.4134/BKMS.2011.48.2.291
  8. U. C. Ji and Y. Y. Kim, Convolution of white noise operators, Bull. Korean Math. Soc. 48 (2011), 1003-1014. https://doi.org/10.4134/BKMS.2011.48.5.1003
  9. U. C. Ji, Y. Y. Kim, and Y. J. Park, Yeh convolution of white noise functionals, J. Appl. Math. & Informatics 31 (2013), 825-834. https://doi.org/10.14317/jami.2013.825
  10. U. C. Ji, Y. Y. Kim, and Y. J. Park, Convolutions of generalized white noise functionals, Probab. Math. Statist. 33 (2013), 435-450.
  11. U. C. Ji, Y. Y. Kim, and Y. J. Park, Factorization property of convolutions of white noise operators, Indian J. Pure Appl. Math. 46 (2015), 463-476. https://doi.org/10.1007/s13226-015-0146-3
  12. U. C. Ji and N. Obata, Initial value problem for white noise operators and quantum stochastic processes, in "Infinite Dimensional Harmonic Analysis," H. Heyer et al. (eds.), D.+M. Grabner (2000), 203-216.
  13. Yu. G. Kondratiev and L. Streit, Spaces of white noise distributions: Constructions, descriptions, applications I, Rep. Math. Phys. 33 (1993), 341-366. https://doi.org/10.1016/0034-4877(93)90003-W
  14. I. Kubo and S. Takenaka, Calculus on Gaussian white noise I-IV, Proc. Jpn. Acad. 56A (1980) 376-380.
  15. I. Kubo and S. Takenaka, Calculus on Gaussian white noise I-IV, Proc. Jpn. Acad. 56A (1980) 411-416.
  16. I. Kubo and S. Takenaka, Calculus on Gaussian white noise I-IV, Proc. Jpn. Acad. 57A (1981) 433-437.
  17. I. Kubo and S. Takenaka, Calculus on Gaussian white noise I-IV, Proc. Jpn. Acad. 58A (1982) 186-189.
  18. H. -H. Kuo, White Noise Distribution Theory, CRC Press, 1996.
  19. N. Obata, White Noise Calculus and Fock Space, Lect. Notes on Math. 1577, Springer-Verlag, Berlin, 1994.
  20. N. Obata, Generalized quantum stochastic processes on Fock space, Publ. RIMS 31 (1995), 667-702. https://doi.org/10.2977/prims/1195163920
  21. N. Obata, Wick product of white noise operators and quantum stochastic differential equations, J. Math. Soc. Japan 51 (1999), 613-641. https://doi.org/10.2969/jmsj/05130613
  22. N. Obata and H. Ouerdiane, A note on convolution operators in white noise calculus, Infin. Dimens. Anal. Quantum Probab. Relat. Top. 14 (2011), 661-674. https://doi.org/10.1142/S0219025711004535
  23. J. Yeh, Convolution in Fourier-Wiener transform, Pacific J. Math. 15 (1965), 731-738. https://doi.org/10.2140/pjm.1965.15.731