Acknowledgement
Supported by : National Brazilian Agency CNPq, University of Brasilia
References
- Al-Kafaji, I.K.J. (2013), "Formulation of a dynamic Material Point Method (MPM) for geotechnical problems", Ph.D. Thesis; University of Stuttgart, Germany.
- Arroyo, M., Butlanska, J., Gens, A., Calvetti, F. and Jamiolkowski, M. (2011), "Cone penetration tests in a virtual calibration chamber", Geotechnique, 61(6), 525-531. https://doi.org/10.1680/geot.9.P.067
- Baligh, M.M. (1986), "Strain path method", J. Geotech. Eng., 111(9), 1108-1136. https://doi.org/10.1061/(ASCE)0733-9410(1985)111:9(1108)
- Bardenhagen, S.G. and Kober, E.M. (2004), "The generalized interpolation material point method", Tech. Sci. Press, 5(6), 477-495.
- Bardenhagen, S.G., Brackbill, J.U. and Sulsky, D. (2000), "The material-point method for granular materials", Comput. Method Appl. Mech. Eng., 187(3-4), 529-541. https://doi.org/10.1016/S0045-7825(99)00338-2
- Bardenhagen, S.G., Guilkey, J.E., Roessig, K.M., Brackbill, J.U. and Witzel, W.M. (2001), "An improved contact algorithm for the material point method and application to stress propagation in granular material", Comput. Model. Eng. Sci., 2(4), 509-522.
- Bardenhagen, S.G., Nairn, J.A. and Lu, H. (2011), "Simulation of dynamic fracture with the material point method using a mixed j-integral and cohesive law approach", Int. J. Fract., 170(1), 49-66. https://doi.org/10.1007/s10704-011-9602-1
- Beuth, L. (2012), "Formulation and application of a Quasi-Static material point method", Ph.D. Thesis; Univertisty of Stuttgart, Germany.
- Beuth, L., Benz, T. and Vermeer, P.A. (2007), "Large deformation analysis using a quasi-static material point method", Proceedings of the 11th International Conference on Computer Methods in Mechanics, Lodz-Spala, Poland, June.
- Campos, J.L.E., Vargas, E.A., Bernardes, G., Ibañez, J.P. and Velloso, R.Q. (2005), "Numerical experiments with discrete elements to simulate pile penetration in granular soils", Proceedings of CCVI Iberian Latin-American Congress on Computational Methods in Engineering-CILANCE, Espirito Santo, Brazil, July.
- Carter, J.P., Randolph, M.F. and Wroth, C.P. (1979), "Stress and pore pressure changes in clay during and after the expansion of a cylindrical", Int. J. Numer. Anal. Methods Geomech., 3, 305-322. https://doi.org/10.1002/nag.1610030402
- Di, Y., Yang, J. and Sato, T. (2007), "An operator-split ALE model for large deformation analysis of geomaterials", Int. J. Numer. Anal. Methods Geomech, 31(12), 1375-1399. https://doi.org/10.1002/nag.601
- Dijkstra, J., Broere, W. and Heeres, O.M. (2011), "Numerical simulation of pile installation", Comput Geotech., 38(5), 612-622. https://doi.org/10.1016/j.compgeo.2011.04.004
- Gadala, M.S. and Wang, J. (2000), "Computational implementation of stress integration in FE analysis of elasto-plastic large deformation problems", Finite Elem. Anal. Design, 35(4), 379-396. https://doi.org/10.1016/S0168-874X(00)00003-2
- Grabe, J., Henke, S. and Schumann, B. (2009), "Numerical simulation of pile driving in the passive earth pressure zone of excavation support walls", Bautechnik, 86(S1), 40-45. https://doi.org/10.1002/bate.200910040
- Gue, S.S. (1984), "Ground heave around driven piles in clay", Ph.D. Thesis; University of Oxford, UK.
- Henke, S. (2010), "Influence of pile installation on adjacent structures", Int. J. Numer. Anal. Method. Geomech., 34(11), 1191-1210. https://doi.org/10.1002/nag.859
- Jardine, R.J., Chow, F., Overy, R. and Standing, J. (2005), ICP Design Methods for Driven Piles in Sands and Clays, Thomas Telford Publishing, London, UK.
- Jardine, R.J., Zhu, B.T., Foray, P.Y. and Yang, Z.X. (2013a), "Interpretation of stress measurements made around closed-ended displacement piles in sand, Geotechnique, 63(8), 613-627. https://doi.org/10.1680/geot.9.P.138
- Jardine, R.J., Zhu, B.T., Foray, P.Y. and Yang, Z.X. (2013b), "Measurement of stresses around closed-ended displacement piles in sand", Geotechnique, 63(8), 1-17. https://doi.org/10.1680/geot.9.P.137
- Lehane, B.M. and Gill, D.R. (2004), "Displacement fields induced by penetrometer installation in an artificial soil", Int. J. Phy. Modelling Geotech., 4(1), 25-36. https://doi.org/10.1680/ijpmg.2004.040103
- Lehane, B.M. and White, D.J. (2005), "Lateral stress changes and shaft friction for model displacement piles in sand", Can Geotech J., 42(4), 1039-1052. https://doi.org/10.1139/t05-023
- Lemiale, V., Nairn, J.A. and Hurmane, A. (2010), "Material point method simulation of equal channel angular pressing involving large plastic strain and contact through sharp corners", Tech Sci. Press, 70(1), 41-66.
- Llano-Serna, M.A. (2012), "Applications of the Material Point Method (MPM) to geotechnical problems", M.Sc. Dissertation; University of Brasilia, Brasilia, Brazil.
- Lorenzo, R., Cunha, R.P. and Cordao Neto, M.P. (2013), "Materal point method for geotechnical problems involving large deformation", Proceedings of III International Conference in Particles-Based Methods, Sttutgart, Germany, September.
- Nairn, J.A. (2003), "Material point method calculations with explicit cracks", Comput. Model. Eng. Sci., 4(6), 649-663.
- Nairn, J.A. (2006), "Numerical simulations of transverse compression and densification in wood", Wood Fiber Sci., 38(4), 576-591.
- Nairn, J.A. and Guilkey, E. (2015), "Axisymmetric form of the generalized interpolation material point method", Int. J. Numer. Methods Eng., 101(2), 127-147. https://doi.org/10.1002/nme.4792
- Nazem, M., Sheng, D. and Carter, J.P. (2006), "Stress integration and mesh refinement for large deformation in geomechanics", Int. J. Numer. Methods Eng., 65(7), 1002-1027. https://doi.org/10.1002/nme.1470
- Nazem, M., Carter, J.P., Sheng, D. and Sloan, S.W. (2009), "Alternative stress-integration schemes for large-deformation problems of solid mechanics", Finite Elem. Anal. Design, 45(12), 934-943. https://doi.org/10.1016/j.finel.2009.09.006
- Potts, D.M. and Gens, A. (1985), "A critical assessment of methods of correcting for drift from the yield surface in elasto-plastic finite element analysis", Int. J. Numer. Anal. Methods Geomech, 9, 149-159. https://doi.org/10.1002/nag.1610090204
- Poulos, H.G. and Davis, E.H. (1974), Elastic Solutions for Soils and Rocks, John Wiley & Sons, Sydney, Australia.
- Randolph, M.F. (2003), "Science and empiricism in pile foundation design", Geotechnique, 53(10), 847-875. https://doi.org/10.1680/geot.2003.53.10.847
- Randolph, M.F., Carter, J.P. and Wroth, C.P. (1979), "Driven piles in clay-the effects of installation and subsequent effects consolidation", Geotechnique, 29(4), 361-393. https://doi.org/10.1680/geot.1979.29.4.361
- Sadeghirad, A., Brannon, R.M. and Burghardt, J. (2011), "A convected particle domain interpolation technique to extend applicability of the material point method for problems involving massive deformations", Int. J. Numer. Method. Eng., 86(12), 1435-1456. https://doi.org/10.1002/nme.3110
- Sagaseta, C. and Whittle, A.J. (2001), "Prediction of ground movements due to pile driving in clay", J. Geotech. and Geoenviron. Eng., 127(1), 55-66. https://doi.org/10.1061/(ASCE)1090-0241(2001)127:1(55)
- Sagaseta, C., Whittle, A.J. and Santagata, M. (1997), "Deformation analysis of shallow penetration", Int. J. Numer. Anal. Methods Geomech., 21(10), 687-719. https://doi.org/10.1002/(SICI)1096-9853(199710)21:10<687::AID-NAG897>3.0.CO;2-3
- Sheng, D., Nazem, M. and Carter, J.P. (2009), "Some computational aspects for solving deep penetration problems in geomechanics", Computat. Mech., 44(4), 549-561. http://doi.org/10.1007/s00466-009-0391-6
- Shin, K.W. (2009), "Numerical simulation of landslides and debris flows using an enhanced material point method", Ph.D. Dissertation; University of Washington, Washington, USA.
- Sulsky, D., Zhou, S.-J. and Schreyer, H.L. (1995), "Application of a particle-in-cell method to solid mechanics", Comput. Phys. Commun., 87(1-2), 236-252. https://doi.org/10.1016/0010-4655(94)00170-7
- Tsuha, C.H.C., Foray, P.Y., Jardine, R.J., Yang, Z.X., Silva, M. and Rimoy, S. (2012), "Behaviour of displcament piles i sand under cyclic axial loading", Soil. Found., 52(3), 393-410. https://doi.org/10.1016/j.sandf.2012.05.002
- Wang, D., Bienen, B., Nazem, M., Tian, Y., Zheng, J., Pucker, T. and Randolph, M.F. (2015), "Large deformation finite element analyses in geotechnical engineering", Comput Geotech., 65, 104-114. https://doi.org/10.1016/j.compgeo.2014.12.005
- Wieckowski, Z. (2004), "The material point method in large strain engineering problems", Comput. Method. Appl. Mech. Eng., 193(34-41), 4417-4438. https://doi.org/10.1016/j.cma.2004.01.035
- Xu, X., Liu, H. and Lehane, B.M. (2006), "Pipe pile installation effects in soft clay", Geotech. Eng., 159(4), 285-296. https://doi.org/10.1680/geng.2006.159.4.285
- Yang, J., Tham, L.G., Lee, P.K.K., Chan, S.T. and Yu, F. (2006), "Behaviour of jacked and driven piles in sandy soil", Geotechnique, 56(4), 245-259. https://doi.org/10.1680/geot.2006.56.4.245
- Yang, Z.X., Jardine, R.J., Zhu, B.T., Foray, P. and Tsuha, C.H.C. (2010), "Sand grain crushing and interface shearing during displacement pile installation in sand", Geotechnique, 60(6), 469-482. https://doi.org/10.1680/geot.2010.60.6.469
- Zhang, L.M. and Wang, H. (2009), "Field study of construction effects in jacked and driven steel H-piles", Geotechnique, 59(1), 63-69. https://doi.org/10.1680/geot.2008.T.029
- Zhang, Z. and Wang, Y. (2014), "Examining setup mechanisms of driven piles in sand using laboratory model pile tests", J. Geotech. Geoenviron. Eng., 141(3), 1-12.
Cited by
- MPM and ALE Simulations of Large Deformations Geotechnics Instability Problems vol.87, pp.212, 2020, https://doi.org/10.15446/dyna.v87n212.80975
- Numerical simulation of set-up around shaft of XCC pile in clay vol.21, pp.5, 2016, https://doi.org/10.12989/gae.2020.21.5.489
- Temperature effects and heat transfer in granular soils by discrete element modeling of CPT vol.25, pp.5, 2016, https://doi.org/10.1080/19648189.2018.1548740
- Numerical modelling of the long-term effects of XCC piling in fine-grained soil vol.26, pp.1, 2016, https://doi.org/10.12989/gae.2021.26.1.027