Abstract
The images captured by digital still cameras or mobile phones are not always satisfactory because the devices have limited dynamic ranges compared with that of the real world. To cope with the problems, tone mapping function based methods and retinex theory based methods are studied. However, these methods generate a halo artifact or limited enhancement of global and local contrasts. The proposed method estimates illumination information used for image enhancement by optimizing a dynamic range of input image. The estimated illumination information has smoothness characteristic where the luminance is flat and does not have where the luminance changes to prevent the halo artifact. Additionally, the estimated illumination information and surrounding pixel values are considered when the tone mapping function is applied to overcome the limitations of the conventional tone mapping function approach. Experimental results show that the proposed algorithm outperforms the conventional methods on objective and subjective criteria.
카메라 센서는 사람의 눈에 비해 제한적인 다이나믹 레인지를 갖기 때문에 영상 획득 시 실제 보이는 것과 다른 모습의 영상을 획득하게 된다. 이러한 문제를 영상 처리를 통해 해결하고자 톤 맵핑 함수를 이용한 방법들과 사람의 눈을 모델링한 레티넥스 이론 기반의 방법들이 연구되었다. 하지만 이러한 방법들은 후광 효과가 발생하거나 영상 개선 시 전역 또는 국부 콘트라스트 향상이 제한적이라는 단점이 있다. 제안하는 방법에서는 영상의 광원 정보를 레티넥스 이론을 활용하여 추정한 후 이를 영상의 품질 향상을 위해 다이나믹 레인지를 최적화시키는데 이용한다. 이 과정에서 후광 효과가 발생하는 것을 방지하기 위해 유사 밝기 영역에서만 평탄화가 이루어지고 밝기 차가 나는 영역은 밝기 차를 유지하도록 한다. 또한 톤 맵핑 함수 적용 시 하나의 화소가 아닌 주변 영역 정보와 추정된 광원 정보를 모두 고려하여 전역 및 국부 콘트라스트가 동시에 향상되는 알고리즘을 제안한다. 실험 결과들을 통해 제안하는 방법이 기존 방법에 비해 국부 콘트라스트 수치가 약 0.4 향상 되었고, 시각적인 면에서도 콘트라스트 향상과 함께 암부와 명부를 동시에 효과적으로 표현한 것을 확인 할 수 있다.