DOI QR코드

DOI QR Code

The Effects of Whole-task Sequencing Emphasis Manipulation on Expertise Acquisition in Web Based Complex Task

웹기반 복합적 과제에서 전체과제 계열화 강조변화 방법이 전문성 향상에 미치는 영향

  • Received : 2016.12.08
  • Accepted : 2016.12.15
  • Published : 2016.12.31

Abstract

The purpose of this study was to investigate the effects of whole-task sequencing emphasis manipulation on expertise acquisition in web based complex task. To achieve the purpose, emphasis manipulation sequencing type is composed of a simple emphasis manipulation, a snowballing manipulation, and a full emphasis manipulation sequencing and participants was drawn from a pool of 93 undergraduate students sampled for the study. According to the findings, a snowballing manipulation group invested significantly lower cognitive load than a full emphasis manipulation group but did not a simple emphasis manipulation group. Based on these findings, though complex task is included of high interactivity owing to real task, learner cannot suffer cognitive overload because emphasis manipulation which can view the whole task and the part task in parallel provides meta cognition for learner. And whole-task sequencing emphasis manipulation affects to transfer. The snowballing emphasis manipulation group invested significantly higher than simple emphasis manipulation group and full emphasis manipulation group. Based on these findings, the snowballing manipulation which learner use whole-task sequencing and part-task sequencing simultaneously contribute to understandings and ability to solve problems for complex task and it will in turn, lead to expertise acquisition.

본 연구는 웹기반 복합적 과제에서 전체과제 계열화 방법이 전문성 향상에 미치는 영향을 규명하는 것을 목적으로 한다. 이를 위해 전체과제 계열화 방법을 단순 제시, 눈덩이 강조변화, 전체 강조변화로 구별하였으며, 93명의 대학생이 실험에 참가하였다. 연구결과에 따르면, 인지부하에서 전체과제 계열화 방법 간 유의한 차이가 나타났지만, 사후검정 결과 단순 제시 집단과 눈덩이 강조변화 집단 간에는 유의한 차이가 나타나지 않았다. 이에 따라 복합적 과제는 실제의 과제를 다루어 각 요소들의 높은 상호작용성을 가지고 있지만 부분을 강조하되 전체를 함께 조망할 수 있는 눈덩이 강조변화 방식의 제공은 학습자의 메타인지를 지원해줄 수 있어 인지과부하를 일으키지 않는다는 것을 확인할 수 있었다. 학습전이를 살펴본 결과 전체과제 계열화 방법에 따라 집단 간 유의한 차이가 나타났다. 이는 전체과제 계열화를 사용할지라도 그 안에서 전체과제 계열화의 단점인 연습부족을 보완하기 위해 눈덩이 강조변화 방식을 통해 계열화 하였을 때 복합적 과제에 대한 이해도를 높여 실제 문제해결 과제에서 질 높은 결과물을 구성하여 초보자의 전문성을 향상 시킬 수 있음을 시사했다.

Keywords

References

  1. Bruning, R. H., Schraw, G. J., & Ronning, R. R. (1999). Cognitive psychology and instruction (3rd ed.). Upper Saddle River, NJ: Merrill/Prentice Hall.
  2. Clark, R. C., Ayres, P., & Sweller, J. (2005). The impact of sequencing and prior knowledge on learning mathematics through spreadsheet applications. Educational Technology Research and Development, 53(3), 15-24. https://doi.org/10.1007/BF02504794
  3. Clark, R. C., & Mayer, R. E. (2011). E-learning and the science of instruction: proven guidelines for consumers and designers of multimedia learning (3rd ed). San Francisco, CA: Pfeiffer.
  4. Elio, R. (1986). Representation of similar well-learned cognitive procedures. Cognitive Science, 10(1), 41-73. https://doi.org/10.1207/s15516709cog1001_2
  5. Gagne, R. M., & Merill, M. D. (1990). Integrative goals for instructional design. Educational Technology, Research & Development, 38(1), 23-30. https://doi.org/10.1007/BF02298245
  6. Gopher, D., Weil, M., & Siegel, D. (1989). Practice under chaining priorities: An approach to the training of complex skills. Acta Psychologica, 71, 147-177. https://doi.org/10.1016/0001-6918(89)90007-3
  7. Kester, L., Kirschner, P. A., & van Merrienboer, J. J. G. (2005). The management of cognitive load during complex cognitive skill acquisition by means of computer-simulated problem solving. British Journal of Educational Psychology, 75, 71-85. https://doi.org/10.1348/000709904X19254
  8. Kim, K. J., Kim, D. S., Kim, K. (2014). The effects of Types of Decision-Making and Collaboration Processing on Collaboration Performance, and Social Support and Collaboration Load Among Collaborators in CSCL. Korean Journal of the Learning Sciences. 8(3), 40-59.
  9. Kim, S. (2004) Development of mathematics lesson plans using ICT by prospective elementary school teachers. Proceedings of PME Conference, 28(1).
  10. Mayer, R. E. (1992). Thinking, problem solving, cognition(2nd ed). New York: Freeman.
  11. Mayer, R. E. (2003). Learning and instruction. Upper Saddle River, NJ: Merrill/Prentice Hall.
  12. Merrill, M. D. (2002). First principles of instruction. Educational Technology Research and Development, 50(3), 43-59. https://doi.org/10.1007/BF02505024
  13. Pass, F. (1992). Training strategies for attaining transfer of problem-solving skill in statistics: A cognitive-load approach. Journal of Educational Psychology. 84(4), 429-434. https://doi.org/10.1037/0022-0663.84.4.429
  14. Pass, F., Tuovinen, J. E., Tabbers, H., & van Gerven, P. W. M. (2003). Cognitive load measurement as a means to advance cognitive load theory. Educational Psychologist, 38(1), 63-71. https://doi.org/10.1207/S15326985EP3801_8
  15. Plass, J. L., Moreno, R., & Brunken, R. (2010). Cognitive load theory. New York, NY: Cambridge University Press.
  16. Reigelulth, C. M. (1999). Instructional-design theories and models: A new paradigm of instructional theory, Volume II. Mahwah, NJ: Lawrence Erlbaum Associates.
  17. Renkl, A. (2005). The worked out example principle in multimedia learning. In R. E. Mayer (Ed.), The Cambridge handbook of multimedia learning (pp. 229-245). New York: Cambridge University Press.
  18. Rothwell, W. J., & Kazanas, H. C. (1992). Mastering the instructional design process: A systemetic approach. SF, CA: Jossey-Bass. "ch 13 evaluating instruction"
  19. Ryu, J. H., Yim, J. H. (2009). An Explorary Validation for Constructs of Cognitive Load. The Journal of Educational Information and Media. 15(4), 1-27.
  20. van Merrienboer, J. J. G. (1997). Training Complex Cognitive Skills: A Four-Component Instructional Design Model for Technical Training. Educational Technology Publications, Englewood Cliffs, NJ.
  21. van Merrienboer, J. J. G., Kirschner, P. A., & Kester, L. (2003). Taking the load off a learner's mind: Instructional design for complex learning. Educational Psychologist, 38(1), 5-13. https://doi.org/10.1207/S15326985EP3801_2
  22. van Merrienboer, J. J. G., & Paas, F. G. W. C. (2003). Powerful learning and the many faces of instructional design: Toward a framework for the design of powerful learning environments. Powerful learning environment: Unravelling basic components and dimensions, 3-20
  23. van Merrienboer, J. J. G., Kester, L., & Paas, F. (2006). Teahing complex rather than simple tasks: Balancing intrinsic and germane load to enhance transfer of learning. Applied Cognitive Psychology, 20(3), 343-352. https://doi.org/10.1002/acp.1250
  24. van Merrienboer, J. J. G. (2007). Alternative models of instructional design: Holistic design approaches and complex learning, 72-81. In R. Reiser & J. De mpsey(Eds.), Trends and issues in instructional design and technology (2nd ed). Old Tappan, NJ: Merrill/Prentice Hall.
  25. van Merrienboer, J. J. G., & Kirschner, P. A. (2007). Ten steps to complex learning: A systematic approach to four-component instructional design. Mahwah, NJ: Lawrence Erlbaum Associcates.
  26. Vygotsky, L. (1978). Interaction between learning and development. Readings on the development of children, 23(3), 34-41.