DOI QR코드

DOI QR Code

Synthesis of PbMoO4 Using a Facile Surfactant-assisted Hydrothermal Method and Their Photocatalytic Activity

계면활성제를 이용한 수열합성법에 의한 PbMoO4의 합성 및 그들의 광촉매 활성

  • Hong, Seong-Soo (Department of Chemical Engineering, Pukyong National University)
  • Received : 2016.04.14
  • Accepted : 2016.05.16
  • Published : 2016.06.10

Abstract

Lead molybdate ($PbMoO_4$) was successfully synthesized using a facile surfactant-assisted hydrothermal process and characterized by XRD, Raman, TEM, PL, BET and DRS. We also investigated the photocatalytic activity of these materials for the decomposition of Rhodamine B under UV-light irradiation. From XRD and Raman results, well-crystallized $PbMoO_4$ crystals were successfully synthesized with the particle size of 52-69 nm. $PbMoO_4$ catalysts prepared in the presence of cetyltrimethyl ammonium bromide (CTAB) enhanced the photocatalytic activity compared to that of using P-25 and pure $PbMoO_4$ catalysts. The maximum photocatalytic activity of $PbMoO_4$ catalyst were observed when preparing it in pH 9 solution. The The PL peak at about 540 nm were observed for all catalysts and the excitonic PL signal increased proportionally with respect to the photocatalytic activity of Rhodamine B.

$PbMoO_4$를 계면활성제를 이용하여 수열합성법으로 합성하였고, XRD, Raman, TEM, PL, BET 및 DRS 등에 의해 특성 분석을 하였다. 이들을 사용하여 자외선 조사 하에서 Rhodamine B의 광분해 반응에서의 활성을 조사하였다. XRD 및 Raman의 분석 결과로부터 계면활성제를 이용한 손쉬운 수열합성에 의해 잘 결정화된 $PbMoO_4$ 구조를 가진 촉매들이 합성되었으며 52에서 69 nm의 크기를 나타내었다. cetyltrimethylammonium bromide (CTAB)를 계면활성제로 사용하여 합성된 $PbMoO_4$는 P-25와 순수한 $PbMoO_4$ 보다 높은 광촉매 활성을 나타내었다. pH 9에서 합성된 $PbMoO_4$ 촉매가 가장 높은 활성을 나타내었다. 모든 촉매들은 540 nm 부근에서 강하고 넓은 PL 흡수밴드가 나타났으며, 이 피크의 세기가 커질수록 Rhodamine B의 광분해 활성이 증가하는 것으로 나타났다.

Keywords

References

  1. H. Chen, C. Ge, R. Li, J. Wang, C. Wu, and X. Zeng, Growth of Lead Molybdate Crystals by Vertical Bridgman Method, J. Phys. Chem. C, 113, 5812-5822 (2009). https://doi.org/10.1021/jp810294q
  2. J. Liu, J. Ma, B. Lin, Y. Ren, X. Jiang, J. Tao, and X. Zhu, Room Temperature Synthesis and Optical Properties of SrMoO4 Crystallites by w/o Microemulsion, Ceram. Int., 34, 1557-1560 (2008). https://doi.org/10.1016/j.ceramint.2007.03.025
  3. S. Wu, H. Dong, and W. Wei, Investigations on the Local Structures and the EPR Parameters for $Er^{3+}$ in PbMoO4 and $SrMoO_{4}$, J. Alloy Compd., 375, 39-43 (2004). https://doi.org/10.1016/j.jallcom.2003.11.137
  4. K. Sayama, A. Nomura, Z. G. Zou, R. Abe, Y. Abe, and H. Arakawa, Photoelectrochemical decomposition of water on nanocrystalline $BiVO_{4}$ film electrodes under visible light, Chem. Commun., 24, 2908-2909 (2003).
  5. Z. C. Wang, C. J. Medforth, and J. A. Shelnutt, Self-metallization of photocatalytic porphyrin nanotubes, J. Am. Chem. Soc., 126, 16720-16721 (2004). https://doi.org/10.1021/ja044148k
  6. A. Hameed, T. Montini, V. Gombac, and P. Fornasiero, Surface Phases and Photocatalytic Activity Correlation of $Bi_{2}O_{3}/Bi_{2}O_{4-x}$ Nanocomposite, J. Am. Chem. Soc., 130, 9658-9659 (2008). https://doi.org/10.1021/ja803603y
  7. X. Q. Han, Q. Kuang, M. S. Jin, Z. X. Xie, and L. X. Zheng, Synthesis of titania nanosheets with a high percentage of exposed (001) facets and related photocatalytic properties, J. Am. Chem. Soc., 131, 3152-3153 (2009). https://doi.org/10.1021/ja8092373
  8. Y. Zheng, F. Duan, J. Wan, L. Liu, M. Q. Chen, and Y. Xie, Enhanced photocatalytic activity of bismuth molybdates with the preferentially exposed {010} surface under visible light irradiation, J. Mol. Catal., 303, 9-14 (2009). https://doi.org/10.1016/j.molcata.2008.12.010
  9. M. Shen, Q. Zhang, H. Chen, and T. Peng, Hydrothermal fabrication of PbMoO4 microcrystals with exposed (001) facets and its enhanced photocatalytic properties, Cryst. Eng. Commun., 13, 2785-2791 (2011). https://doi.org/10.1039/c0ce00756k
  10. J. Bi, L. Wu, Y. Zhang, Z. Li, J. Li, and X. Fu, Solvothermal Preparation, Electronic Structure and Photocatalytic Properties of $PbMoO_{4}$ and $SrMoO_{4}$, Appl. Catal. B, 91, 135-143 (2009) https://doi.org/10.1016/j.apcatb.2009.05.016
  11. B. D. Cullity, Elements of X-Ray Diffraction, Adison-Wesley, Reading, MA (1978).
  12. A. Phuruangrat, T. Thongtemb, and S. Thongtem, Synthesis of lead molybdate and lead tungstate via microwave irradiation method, J. Cryst. Growth., 311, 4076-4081 (2009). https://doi.org/10.1016/j.jcrysgro.2009.06.013
  13. J. C. Sczancoski, M. D. R. Bomio, L. S. Cavalcante, M. R. Joya, P. S. Pizani, J. A. Varela, E. Longo, M. S. Li, and A. Andre's, Morphology and blue photoluminescence emission of $PbMoO_{4}$ processed in conventional hydrothermal, J. Phys. Chem. C, 113 5812-5822 (2009). https://doi.org/10.1021/jp810294q
  14. W. Y. Jung, G. D. Lee, S. S. Park, K. W. Lim, M. S. Lee, and S. S. Hong, Synthesis of $TiO_{2}$ Supported on SBA-15 Using Different Method and Their Photocatalytic Activity, J. Nanosci. Nanotech., 11, 7446-7450 (2011). https://doi.org/10.1166/jnn.2011.4765