DOI QR코드

DOI QR Code

Immobilization of Late Transition Metal Catalyst on the Amino-functionalized Silica and Its Norbornene Polymerization

아미노-기능화된 실리카 위 후전이 금속 촉매 담지 및 이를 이용한 노보넨 중합

  • Pacia, Rose Mardie P. (Department of Chemical Engineering, Kongju National University) ;
  • Kim, So Hui (Department of Chemical Engineering, Kongju National University) ;
  • Lee, Jeong Suk (Department of Chemical Engineering, Kongju National University) ;
  • Ko, Young Soo (Department of Chemical Engineering, Kongju National University)
  • Received : 2016.04.21
  • Accepted : 2016.05.06
  • Published : 2016.06.10

Abstract

In this study, an amorphous silica was functionalized with aminosilane, N-[(3-trimethoxysilyl)propyl]ethylenediamine (2NS) and the late transition metal catalysts including ($(DME)NiBr_2$ and $PdCl_2$(COD)) were subsequently immobilized on the functionalized amorphous silica for norbornene polymerization. Effects of the polymerization temperature, polymerization time, Al/Ni molar ratio, and type of co-catalyst on norbornene polymerization were investigated. Unsupported late transition metal catalysts did not show any activities for norbornene polymerization. However, the $SiO_2$/2NS/Ni catayst with MAO system, with increasing polymerization temperature, increased the polymerization activity and decreased the molecular weight of the polynorbornene (PNB). Furthermore, the catalyst when increasing polymerization temperature caused the decrease in both the polymerization activity and molecular weight of PNB. This confirmed that the stability of $SiO_2$/2NS/Ni at a high temperature was greater than that of $SiO_2$/2NS/Pd. Also the longer polymerization time resulted in the higher conversion of norbornene for both catalysts. When the Al : Ni molar ratio was 1000 : 1, the highest activity (15.3 kg-PNB/($({\mu}mol-Ni^*hr$)) but lowest molecular weight ($M_n$ = 124,000 g/mol) of PNB were achieved. Also $SiO_2$/2NS/Ni catalyst with borate/TEAL resulted in diminishing the polymerization activity and molecular weight of PNB with increasing the polymerization temperature.

본 연구에서는 무정형 실리카의 세공 내를 아미노실란인 N-[(3-trimethoxysilyl)propyl]ethylenediamine (2NS)를 이용하여 표면 기능화한 후 표면 기능화된 실리카에 후전이 금속 촉매인 $(DME)NiBr_2$$PdCl_2$(COD)를 담지하여 노보넨 중합을 실시하였다. 중합 온도와 중합 시간, Al/Ni 몰비, 조촉매 종류를 변화시켜 중합 특성에 미치는 영향을 조사하였다. 담지되지 않은 촉매($(DME)NiBr_2$, $PdCl_2$(COD))로 노보넨 중합을 수행하였을 경우 중합반응은 일어나지 않았다. 그러나 조촉매로 MAO를 이용하여 중합한 경우 $SiO_2$/2NS/Ni 촉매는 중합 온도가 증가할수록 활성은 증가하였고 폴리노보넨(polynorbornene, PNB)의 분자량은 급격하게 감소하였다. $SiO_2$/2NS/Pd 촉매는 온도가 증가할수록 활성과 PNB의 분자량 모두 감소하는 경향을 보였다. $SiO_2$/2NS/Ni 촉매는 $SiO_2$/2NS/Pd 촉매보다 높은 온도에서 안정함을 확인하였다. 또한 두 촉매 모두 중합 시간이 길어질수록 노보넨의 전환율은 증가하였다. Al/Ni 몰비가 1000 : 1일 때 가장 높은 활성(15.3 kg-PNB/(${\mu}mol-Ni^*hr$))을 보이는 반면 가장 낮은 분자량($M_n$ = 124,000 g/mol)의 PNB를 합성하였다. 또한 조촉매로 Borate/TEAL을 이용하여 중합한 경우 $SiO_2$/2NS/Ni 촉매는 중합 온도가 증가할수록 활성과 분자량이 모두 감소하였다.

Keywords

References

  1. G. C. Vougioukalakis, I. Stamatopoulos, N. Petzetakis, C. P. Raptopoulou, V. Psycharis, A. Terzis, P. Kyritsis, M. Pitsikalis, and N. Hadjichristidis, Controlled vinyl-type polymerization of norbornene with a Nickel(II) diphosphinoamine/methylaluminoxane catalytic system, J. Polym. Sci. A: Polym. Chem., 47, 5241-5250 (2009). https://doi.org/10.1002/pola.23573
  2. Y. Jang, H.-K. Sung, S. Lee, and C. Bae, Effects of tris(pentafluorophenyl)borane on the activation of zerovalent-nickel complex in the addition polymerization of norbornene, Polymer, 46, 11301-11310 (2005). https://doi.org/10.1016/j.polymer.2005.09.074
  3. C. Janiak and P. G. Lassahn, Metal catalysts for the vinyl polymerization of norbornene, J. Mol. Catal. A: Chem., 166, 193-209 (2001). https://doi.org/10.1016/S1381-1169(00)00475-1
  4. J. Berding, M. Lutz, A. L. Spek, and E. Bouwman, Nickel N-heterocyclic carbene complexes in the vinyl polymerization of norbornene, Appl. Organometal. Chem., 25, 76-81 (2011). https://doi.org/10.1002/aoc.1714
  5. Z. Sun, F. Zhu, Q. Wu, and S. Lin, Vinyl polymerization of norbornene with novel nickel(II) diphosphinoamine/methylaluminoxane catalytic system, Appl. Organometal. Chem., 20, 175-180 (2006). https://doi.org/10.1002/aoc.1024
  6. N. H. Tarte, H. Y. Cho, and S. I. Woo, Efficient route for cyclic olefin polymerization: nonchelated monodentate benzimidazole nickel(II) complex catalysts for vinyl polymerization of norbornene, Macromolecules, 40, 8162-8167 (2007). https://doi.org/10.1021/ma071696k
  7. C. Janiak and P. G. Lassahn, The vinyl homopolymerization of norbornene, Macromol. Rapid Commun., 22, 479-492 (2001). https://doi.org/10.1002/1521-3927(20010401)22:7<479::AID-MARC479>3.0.CO;2-C
  8. F. Blank and C. Janiak, Metal catalysts for the vinyl/addition polymerization of norbornene, Coord. Chem. Rev., 253, 827-861 (2009). https://doi.org/10.1016/j.ccr.2008.05.010
  9. S. Mecking, Olefin polymerization by late transition metal complexes-A root of ziegler catalysts gains new ground, Angew. Chem. Int. Ed., 40, 534-540 (2001). https://doi.org/10.1002/1521-3773(20010202)40:3<534::AID-ANIE534>3.0.CO;2-C
  10. S. H. Kim and Y. S. Ko, Construction of late transition metal complex on amine-functionalized $SiO_{2}$ and SBA-15 for L-lactide polymerization, J. Nanosci. Nanotechnol., 14, 3073-3079 (2014). https://doi.org/10.1166/jnn.2014.8591
  11. X. Wang and G.-X. Jin, Preparation, structure, and olefin polymerization behavior of a picolyl-functionalized carborane nickel(II) complex, Organometallics, 23, 6319-6322 (2004). https://doi.org/10.1021/om0493356
  12. Y.-Y. Wang, S.-A. Lin, F.-M. Zhu, H.-Y. Gao, and Q. Wu, Vinyl polymerization of norbornene with pyrazolylimine nickel(II)/ methylaluminoxane catalytic systems, J. Appl. Polym. Sci., 110, 3590-3595 (2008). https://doi.org/10.1002/app.28759
  13. J. Hou, W.-H. Sun, D. Zhang, L. Chen, W. Li, D. Zhao, and H. Song, Preparation and characterization of acylhydrazone nickel(II) complexes and their catalytic behavior in vinyl polymerization of norbornene and oligomerization of ethylene, J. Mol. Catal. A: Chem., 231, 221-233 (2005). https://doi.org/10.1016/j.molcata.2005.01.009
  14. Y.-S. Li, Y.-R. Li, and X.-F. Li, New neutral nickel(II) complexes bearing pyrrole-imine chelate ligands: synthesis, structure and norbornene polymerization behavior, J. Organomet. Chem., 667, 185-191 (2003). https://doi.org/10.1016/S0022-328X(02)02181-2
  15. X.-F. Li and Y.-S. Li, Vinylic polymerization of norbornene by neutral nickel(II)-based catalysts, J. Polym. Sci. A: Polym. Chem., 40, 2680-2685 (2002). https://doi.org/10.1002/pola.10358
  16. X. Mi, Z. Ma, N. Cui, L. Wang, Y. Ke, and Y. Hu, Vinyl polymerization of norbornene with dinuclear diimine nickel dichloride/MAO, J. Appl. Polym. Sci., 88, 3273-3278 (2003). https://doi.org/10.1002/app.12149
  17. Th. F. A. Haselwander, W. Heitz, St. A. Krugel, and J. H. Wendorff, Rigid random coils: rotationally confined chain molecules, Macromolecules, 30, 5345-5351 (1997). https://doi.org/10.1021/ma970306z
  18. X. Mi, D. Xu, W. Yan, C. Guo, Y. Ke, and Y. Hu, Preparation of polynorbornene with ${\beta}$-diketonate titanium/MAO catalysts, Polym. Bull., 47, 521-527 (2002). https://doi.org/10.1007/s002890200017