과제정보
연구 과제 주관 기관 : National Science Foundation
참고문헌
- Langer R, Vacanti JP. Tissue engineering. Science. 1993;260:920-6. https://doi.org/10.1126/science.8493529
- Jung JP, Squirrell JM, Lyons GE, Eliceiri KW, Ogle BM. Imaging cardiac extracellular matrices: a blueprint for regeneration. Trends Biotech. 2012;30:233-40. https://doi.org/10.1016/j.tibtech.2011.12.001
- Hanson KP, Jung JP, Tran QA, Hsu S-PP, Iida R, Ajeti V, Campagnola PJ, Eliceiri KW, Squirrell JM, Lyons GE, et al. Spatial and temporal analysis of extracellular matrix proteins in the developing murine heart: a blueprint for regeneration. Tissue Eng Part A. 2012;19:1132-43.
- Murphy SV, Atala A. 3D bioprinting of tissues and organs. Nat Biotech. 2014;32:773-85. https://doi.org/10.1038/nbt.2958
- O'Brien CM, Holmes B, Faucett S, Zhang LG. Three-dimensional printing of nanomaterial scaffolds for complex tissue regeneration. Tissue Eng Part B. 2014;21:103-14.
- Studart AR. Additive manufacturing of biologically-inspired materials. Chem Soc Rev. 2016;45:359-76. https://doi.org/10.1039/C5CS00836K
- Jungst T, Smolan W, Schacht K, Scheibel T, Groll J. Strategies and molecular design criteria for 3D printable hydrogels. Chem Rev. 2016;116:1496-539. https://doi.org/10.1021/acs.chemrev.5b00303
- Jose RR, Rodriquez MJ, Dixon TA, Omenetto FG, Kaplan DL. Evolution of Bioinks and Additive Manufacturing Technologies for 3D Bioprinting. ACS Biomat Sci Eng. 2016; doi: 10.1021/acsbiomaterials.6b00088.
- Guvendiren M, Molde J, Soares RMD, Kohn J. Designing Biomaterials for 3D Printing. ACS Biomat Sci Eng. 2016; doi: 10.1021/acsbiomaterials.6b00121.
- Gudapati H, Dey M, Ozbolat I. A comprehensive review on droplet-based bioprinting: past, present and future. Biomaterials. 2016;102:20-42. https://doi.org/10.1016/j.biomaterials.2016.06.012
- Gilbert TW, Sellaro TL, Badylak SF. Decellularization of tissues and organs. Biomaterials. 2006;27:3675-83.
- Badylak SF, Record R, Lindberg K, Hodde J, Park K. Small intestinal submucosa: a substrate for in vitro cell growth. J Biomat Sci Polym Edn. 1998;9:863-78. https://doi.org/10.1163/156856298X00208
- Ott HC, Matthiesen TS, Goh S-K, Black LD, Kren SM, Netoff TI, Taylor DA. Perfusion-decellularized matrix: using nature's platform to engineer a bioartificial heart. Nat Med. 2008;14:213-21. https://doi.org/10.1038/nm1684
- Song JJ, Ott HC. Organ engineering based on decellularized matrix scaffolds. Trends Mol Med. 2011;17:424-32. https://doi.org/10.1016/j.molmed.2011.03.005
- Caralt M, Uzarski JS, Iacob S, Obergfell KP, Berg N, Bijonowski BM, Kiefer KM, Ward HH, Wandinger-Ness A, Miller WM, et al. Optimization and critical evaluation of decellularization strategies to develop renal extracellular matrix scaffolds as biological templates for organ engineering and transplantation. Am J Transplant. 2015;15:64-75. https://doi.org/10.1111/ajt.12999
- Thomson JA, Itskovitz-Eldor J, Shapiro SS, Waknitz MA, Swiergiel JJ, Marshall VS, Jones JM. Embryonic stem cell lines derived from human blastocysts. Science. 1998;282:1145-7. https://doi.org/10.1126/science.282.5391.1145
- Takahashi K, Yamanaka S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell. 2006;126:663-76. https://doi.org/10.1016/j.cell.2006.07.024
- Yu J, Vodyanik MA, Smuga-Otto K, Antosiewicz-Bourget J, Frane JL, Tian S, Nie J, Jonsdottir GA, Ruotti V, Stewart R, et al. Induced pluripotent stem cell lines derived from human somatic cells. Science. 2007;318:1917-20. https://doi.org/10.1126/science.1151526
- Ng SLJ, Narayanan K, Gao S, Wan ACA. Lineage restricted progenitors for the repopulation of decellularized heart. Biomaterials. 2011;32:7571-80. https://doi.org/10.1016/j.biomaterials.2011.06.065
- Lu T-Y, Lin B, Kim J, Sullivan M, Tobita K, Salama G, Yang L. Repopulation of decellularized mouse heart with human induced pluripotent stem cellderived cardiovascular progenitor cells. Nat Commun. 2013;4:2307. https://doi.org/10.1038/ncomms3307
- Guyette JP, Charest JM, Mills RW, Jank BJ, Moser PT, Gilpin SE, Gershlak JR, Okamoto T, Gonzalez G, Milan DJ, et al. Bioengineering human myocardium on native extracellular matrix. Circ Res. 2016;118:56-72. https://doi.org/10.1161/CIRCRESAHA.115.306874
- Warren L, Manos PD, Ahfeldt T, Loh Y-H, Li H, Lau F, Ebina W, Mandal PK, Smith ZD, Meissner A, et al. Highly efficient reprogramming to pluripotency and directed differentiation of human cells with synthetic modified mRNA. Cell Stem Cell. 2010;7:618-30. https://doi.org/10.1016/j.stem.2010.08.012
- Lian X, Hsiao C, Wilson G, Zhu K, Hazeltine LB, Azarin SM, Raval KK, Zhang J, Kamp TJ, Palecek SP. Robust cardiomyocyte differentiation from human pluripotent stem cells via temporal modulation of canonical Wnt signaling. Proc Natl Acad Sci. 2012;109:E1848-57. https://doi.org/10.1073/pnas.1200250109
- Uygun BE, Soto-Gutierrez A, Yagi H, Izamis ML, Guzzardi MA, Shulman C, Milwid J, Kobayashi N, Tilles A, Berthiaume F, et al. Organ reengineering through development of a transplantable recellularized liver graft using decellularized liver matrix. Nat Med. 2010;16:814-20. https://doi.org/10.1038/nm.2170
- Song JJ, Guyette JP, Gilpin SE, Gonzalez G, Vacanti JP, Ott HC. Regeneration and experimental orthotopic transplantation of a bioengineered kidney. Nat Med. 2013;19:646-51. https://doi.org/10.1038/nm.3154
- Moroni F, Mirabella T. Decellularized matrices for cardiovascular tissue engineering. Am J Stem Cell. 2014;3:1-20.
- Watson SP. Platelet activation by extracellular matrix proteins in haemostasis and thrombosis. Curr Pharm Des. 2009;15:1358-72. https://doi.org/10.2174/138161209787846702
- Zopf DA, Hollister SJ, Nelson ME, Ohye RG, Green GE. Bioresorbable airway splint created with a three-dimensional printer. New Eng J Med. 2013;368:2043-5. https://doi.org/10.1056/NEJMc1206319
- Kang H-W, Lee SJ, Ko IK, Kengla C, Yoo JJ, Atala A. A 3D bioprinting system to produce human-scale tissue constructs with structural integrity. Nat Biotech. 2016;34:312-9. https://doi.org/10.1038/nbt.3413
- Moon S, Hasan SK, Song YS, Xu F, Keles HO, Manzur F, Mikkilineni S, Hong JW, Nagatomi J, Haeggstrom E, et al. Layer by layer three-dimensional tissue epitaxy by cell-laden hydrogel droplets. Tissue Eng Part C. 2009;16:157-66.
- Xu T, Jin J, Gregory C, Hickman JJ, Boland T. Inkjet printing of viable mammalian cells. Biomaterials. 2005;26:93-9. https://doi.org/10.1016/j.biomaterials.2004.04.011
- Lutolf MP, Hubbell JA. Synthetic biomaterials as instructive extracellular microenvironments for morphogenesis in tissue engineering. Nat Biotech. 2005;23:47-55. https://doi.org/10.1038/nbt1055
- Mironov V, Visconti RP, Kasyanov V, Forgacs G, Drake CJ, Markwald RR. Organ printing: tissue spheroids as building blocks. Biomaterials. 2009;30:2164-74. https://doi.org/10.1016/j.biomaterials.2008.12.084
- Norotte C, Marga F, Niklason L, Forgacs G. Scaffold-free vascular tissue engineering using bioprinting. Biomaterials. 2009;30:5910-7. https://doi.org/10.1016/j.biomaterials.2009.06.034
- Ajeti V, Lien CH, Chen SJ, Su PJ, Squirrell JM, Molinarolo KH, Lyons GE, Eliceiri KW, Ogle BM, Campagnola PJ. Image-inspired 3D multiphoton excited fabrication of extracellular matrix structures by modulated raster scanning. Opt Express. 2013;21:25346-55. https://doi.org/10.1364/OE.21.025346
- Xu T, Zhao W, Zhu J-M, Albanna MZ, Yoo JJ, Atala A. Complex heterogeneous tissue constructs containing multiple cell types prepared by inkjet printing technology. Biomaterials. 2013;34:130-9. https://doi.org/10.1016/j.biomaterials.2012.09.035
- Gaetani R, Feyen DAM, Verhage V, Slaats R, Messina E, Christman KL, Giacomello A, Doevendans PAFM, Sluijter JPG. Epicardial application of cardiac progenitor cells in a 3D-printed gelatin/hyaluronic acid patch preserves cardiac function after myocardial infarction. Biomaterials. 2015;61:339-48. https://doi.org/10.1016/j.biomaterials.2015.05.005
- Hahn MS, Miller JS, West JL. Three-dimensional biochemical and biomechanical patterning of hydrogels for guiding cell behavior. Adv Mater. 2006;18:2679-84. https://doi.org/10.1002/adma.200600647
- Culver JC, Hoffmann JC, Poche RA, Slater JH, West JL, Dickinson ME. Threedimensional biomimetic patterning in hydrogels to guide cellular organization. Adv Mater. 2012;24:2344-8. https://doi.org/10.1002/adma.201200395
- Ma X, Qu X, Zhu W, Li Y-S, Yuan S, Zhang H, Liu J, Wang P, Lai CSE, Zanella F, et al. Deterministically patterned biomimetic human iPSC-derived hepatic model via rapid 3D bioprinting. Proc Natl Acad Sci. 2016;113:2206-11. https://doi.org/10.1073/pnas.1524510113
- Su P-J, Tran QA, Fong JJ, Eliceiri KW, Ogle BM, Campagnola PJ. Mesenchymal stem cell interactions with 3D ECM modules fabricated via multiphoton excited photochemistry. Biomacromolecules. 2012;13:2917-25. https://doi.org/10.1021/bm300949k
- Miller JS, Stevens KR, Yang MT, Baker BM, Nguyen D-HT, Cohen DM, Toro E, Chen AA, Galie PA, Yu X, et al. Rapid casting of patterned vascular networks for perfusable engineered three-dimensional tissues. Nat Mater. 2012;11:768-74. https://doi.org/10.1038/nmat3357
- Sooppan R, Paulsen SJ, Han J, Ta AH, Dinh P, Gaffey AC, Venkataraman C, Trubelja A, Hung G, Miller JS, et al. In vivo anastomosis and perfusion of a three-dimensionally-printed construct containing microchannel networks. Tissue Eng Part C. 2016;22:1-7.
- Kolesky DB, Truby RL, Gladman AS, Busbee TA, Homan KA, Lewis JA. 3D bioprinting of vascularized, heterogeneous cell-laden tissue constructs. Adv Mater. 2014;26:3124-30. https://doi.org/10.1002/adma.201305506
- Kolesky DB, Homan KA, Skylar-Scott MA, Lewis JA. Three-dimensional bioprinting of thick vascularized tissues. Proc Natl Acad Sci. 2016;113:3179-84. https://doi.org/10.1073/pnas.1521342113
- Hinton TJ, Jallerat Q, Palchesko RN, Park JH, Grodzicki MS, Shue H-J, Ramadan MH, Hudson AR, Feinberg AW. Three-dimensional printing of complex biological structures by freeform reversible embedding of suspended hydrogels. Sci Adv. 2015;1:e1500758. https://doi.org/10.1126/sciadv.1500758
- Seif-Naraghi SB, Singelyn JM, Salvatore MA, Osborn KG, Wang JJ, Sampat U, Kwan OL, Strachan GM, Wong J, Schup-Magoffin PJ, et al. Safety and efficacy of an injectable extracellular matrix hydrogel for treating myocardial infarction. Sci Transl Med. 2013;5:173ra125.
- Singelyn JM, Sundaramurthy P, Johnson TD, Schup-Magoffin PJ, Hu DP, Faulk DM, Wang J, Mayle KM, Bartels K, Salvatore M, et al. Catheterdeliverable hydrogel derived from decellularized ventricular extracellular matrix increases endogenous cardiomyocytes and preserves cardiac function post-myocardial infarction. J Am Col Cardiol. 2012;59:751-63. https://doi.org/10.1016/j.jacc.2011.10.888
- Wainwright JM, Czajka CA, Patel UB, Freytes DO, Tobita K, Gilbert TW, Badylak SF. Preparation of cardiac extracellular matrix from an intact porcine heart. Tissue Eng Part C. 2010;16:525-32. https://doi.org/10.1089/ten.tec.2009.0392
- Pati F, Jang J, Ha D-H, Won Kim S, Rhie J-W, Shim J-H, Kim D-H, Cho D-W. Printing three-dimensional tissue analogues with decellularized extracellular matrix bioink. Nat Commun. 2014;5:3935. https://doi.org/10.1038/ncomms4935
- Pati F, Ha D-H, Jang J, Han HH, Rhie J-W, Cho D-W. Biomimetic 3D tissue printing for soft tissue regeneration. Biomaterials. 2015;62:164-75. https://doi.org/10.1016/j.biomaterials.2015.05.043
- Jang J, Kim TG, Kim BS, Kim S-W, Kwon S-M, Cho D-W. Tailoring mechanical properties of decellularized extracellular matrix bioink by vitamin B2- induced photo-crosslinking. Acta Biomat. 2016;33:88-95. https://doi.org/10.1016/j.actbio.2016.01.013
- Mannoor MS, Jiang Z, James T, Kong YL, Malatesta KA, Soboyejo WO, Verma N, Gracias DH, McAlpine MC. 3D printed bionic ears. Nano Lett. 2013;13:2634-9. https://doi.org/10.1021/nl4007744
- Feiner R, Engel L, Fleischer S, Malki M, Gal I, Shapira A, Shacham-Diamand Y, Dvir T. Engineered hybrid cardiac patches with multifunctional electronics for online monitoring and regulation of tissue function. Nat Mater. 2016;15:679-85. https://doi.org/10.1038/nmat4590
- Park J, Choi S, Janardhan AH, Lee S-Y, Raut S, Soares J, Shin K, Yang S, Lee C, Kang K-W, et al. Electromechanical cardioplasty using a wrapped elastoconductive epicardial mesh. Sci Transl Med. 2016;8:344ra386.
- Mirmalek-Sani S-H, Sullivan DC, Zimmerman C, Shupe TD, Petersen BE. Immunogenicity of decellularized porcine liver for bioengineered hepatic tissue. Ame J Pathol. 2013;183:558-65. https://doi.org/10.1016/j.ajpath.2013.05.002
- Badylak SF, Valentin JE, Ravindra AK, McCabe GP, Stewart-Akers AM. Macrophage phenotype as a determinant of biologic scaffold remodeling. Tissue Eng Part A. 2008;14:1835-42. https://doi.org/10.1089/ten.tea.2007.0264
- Mora-Solano C, Collier JH. Engaging adaptive immunity with biomaterials. J Mater Chem B. 2014;2:2409-21. https://doi.org/10.1039/C3TB21549K
- Allman AJ, McPherson TB, Badylak SF, Merrill LC, Kallakury B, Sheehan C, Raeder RH, Metzger DW. Xenogeneic extracellular matrix grafts elicit a TH2-restricted immune response. Transplantation. 2001;71:1631-40. https://doi.org/10.1097/00007890-200106150-00024
- Biswas SK, Mantovani A. Macrophage plasticity and interaction with lymphocyte subsets: cancer as a paradigm. Nat Immunol. 2010;11:889-96. https://doi.org/10.1038/ni.1937
- Xu H, Wan H, Sandor M, Qi S, Ervin F, Harper JR, Silverman RP, McQuillan DJ. Host response to human acellular dermal matrix transplantation in a primate model of abdominal wall repair. Tissue Eng Part A. 2008;14:2009-19. https://doi.org/10.1089/ten.tea.2007.0316
- Do A-V, Khorsand B, Geary SM, Salem AK. 3D printing of scaffolds for tissue regeneration applications. Adv Healthcare Mater. 2015;4:1742-62. https://doi.org/10.1002/adhm.201500168
- Neofytou E, O'Brien CG, Couture LA, Wu JC. Hurdles to clinical translation of human induced pluripotent stem cells. J Clin Invest. 2015;125:2551-7. https://doi.org/10.1172/JCI80575
- Eng G, Lee BW, Protas L, Gagliardi M, Brown K, Kass RS, Keller G, Robinson RB, Vunjak-Novakovic G. Autonomous beating rate adaptation in human stem cell-derived cardiomyocytes. Nat Commun. 2016;7:10312. https://doi.org/10.1038/ncomms10312
- Godier-Furnemont AF, Tiburcy M, Wagner E, Dewenter M, Lammle S, El-Armouche A, Lehnart SE, Vunjak-Novakovic G, Zimmermann WH. Physiologic force-frequency response in engineered heart muscle by electromechanical stimulation. Biomaterials. 2015;60:82-91. https://doi.org/10.1016/j.biomaterials.2015.03.055
- Tibbits S. 4D printing: multi-material shape change. Archite Design. 2014;84:116-21.
- Choi J, Kwon OC, Jo W, Lee HJ, Moon M-W. 4D printing technology: a review. 3D Printing and Additive Manufacturing. 2015;2:159-67. https://doi.org/10.1089/3dp.2015.0039
- Rosales AM, Anseth KS. The design of reversible hydrogels to capture extracellular matrix dynamics. Nat Rev Mater. 2016;1:15012. https://doi.org/10.1038/natrevmats.2015.12
- Gladman AS, Matsumoto EA, Nuzzo RG, Mahadevan L, Lewis JA. Biomimetic 4D printing. Nat Mater. 2016;15:413-8. https://doi.org/10.1038/nmat4544
피인용 문헌
- 3D-Printing: Applications in Cardiovascular Imaging vol.5, pp.9, 2016, https://doi.org/10.1007/s40134-017-0239-3
- The Rapidly Evolving Concept of Whole Heart Engineering vol.2017, pp.None, 2017, https://doi.org/10.1155/2017/8920940
- 3D Printing of Organs-On-Chips vol.4, pp.1, 2016, https://doi.org/10.3390/bioengineering4010010
- 3D bioprinting using stem cells vol.83, pp.1, 2016, https://doi.org/10.1038/pr.2017.252
- Mechanotransduction in tumor progression: The dark side of the force vol.217, pp.5, 2018, https://doi.org/10.1083/jcb.201701039
- Decellularization of placentas: establishing a protocol vol.51, pp.1, 2016, https://doi.org/10.1590/1414-431x20176382
- Human Pulmonary 3D Models For Translational Research vol.13, pp.1, 2016, https://doi.org/10.1002/biot.201700341
- Synthesis and characterizations of alginate- α -tricalcium phosphate microparticle hybrid film with flexibility and high mechanical property as a biomaterial vol.13, pp.2, 2016, https://doi.org/10.1088/1748-605x/aa8fa1
- Body builder: from synthetic cells to engineered tissues vol.54, pp.None, 2018, https://doi.org/10.1016/j.ceb.2018.04.010
- Recent trends in bioinks for 3D printing vol.22, pp.1, 2016, https://doi.org/10.1186/s40824-018-0122-1
- Radiological Society of North America (RSNA) 3D printing Special Interest Group (SIG): guidelines for medical 3D printing and appropriateness for clinical scenarios vol.4, pp.1, 2016, https://doi.org/10.1186/s41205-018-0030-y
- Applications of decellularized extracellular matrix in bone and cartilage tissue engineering vol.4, pp.1, 2016, https://doi.org/10.1002/btm2.10110
- Engineering Tissue Fabrication With Machine Intelligence: Generating a Blueprint for Regeneration vol.7, pp.None, 2016, https://doi.org/10.3389/fbioe.2019.00443
- Can tissue engineering produce bioartificial organs for transplantation? vol.43, pp.6, 2016, https://doi.org/10.1111/aor.13443
- Recent Trends in Decellularized Extracellular Matrix Bioinks for 3D Printing: An Updated Review vol.20, pp.18, 2016, https://doi.org/10.3390/ijms20184628
- Digital Design and Automated Fabrication of Bespoke Collagen Microfiber Scaffolds vol.25, pp.11, 2016, https://doi.org/10.1089/ten.tec.2018.0379
- Review of mechanisms and deformation behaviors in 4D printing vol.105, pp.11, 2016, https://doi.org/10.1007/s00170-019-03871-3
- Processing of collagen based biomaterials and the resulting materials properties vol.18, pp.None, 2019, https://doi.org/10.1186/s12938-019-0647-0
- Recent Applications of Three Dimensional Printing in Cardiovascular Medicine vol.9, pp.3, 2016, https://doi.org/10.3390/cells9030742
- Toward the New Generation of Surgical Meshes with 4D Response: Soft, Dynamic, and Adaptable vol.30, pp.36, 2016, https://doi.org/10.1002/adfm.202004145
- Review: Recent advancement and research possibilities in 4D printing technology vol.51, pp.10, 2016, https://doi.org/10.1002/mawe.202000008
- Bioprinting: From Tissue and Organ Development to in Vitro Models vol.120, pp.19, 2020, https://doi.org/10.1021/acs.chemrev.9b00789
- Three‐dimensional printing of extracellular matrix (ECM)‐mimicking scaffolds: A critical review of the current ECM materials vol.108, pp.12, 2020, https://doi.org/10.1002/jbm.a.36981
- Fabrication and properties of alginate/calcium phosphate hybrid beads: A comparative study vol.32, pp.1, 2016, https://doi.org/10.3233/bme-206012
- Utility of perfusion decellularization to achieve biochemical and mechanically accurate whole animal and organ‐specific tissue scaffolds vol.9, pp.6, 2016, https://doi.org/10.14814/phy2.14804
- Bioengineering lungs - current status and future prospects vol.21, pp.4, 2021, https://doi.org/10.1080/14712598.2021.1834534
- A review of biomimetic scaffolds for bone regeneration: Toward a cell‐free strategy vol.6, pp.2, 2016, https://doi.org/10.1002/btm2.10206
- Bioinks-materials used in printing cells in designed 3D forms vol.32, pp.8, 2021, https://doi.org/10.1080/09205063.2021.1892470
- Recent advances on bioengineering approaches for fabrication of functional engineered cardiac pumps: A review vol.280, pp.None, 2016, https://doi.org/10.1016/j.biomaterials.2021.121298