DOI QR코드

DOI QR Code

실측수문자료에 의한 Clark 모형의 매개변수 결정

Determination of Parameters for the Clark Model based on Observed Hydrological Data

  • 안태진 (한경대학교 토목안전환경공학과) ;
  • 전현철 (한경대학교 토목안전환경공학과) ;
  • 김민혁 (한경대학교 토목안전환경공학과)
  • Ahn, Tae Jin (Department of Civil, Safety and Environmental Engrg., Hankyong National Univ.) ;
  • Jeon, Hyun Chul (Department of Civil, Safety and Environmental Engrg., Hankyong National Univ.) ;
  • Kim, Min Hyeok (Department of Civil, Safety and Environmental Engrg., Hankyong National Univ.)
  • 투고 : 2015.10.26
  • 심사 : 2016.02.13
  • 발행 : 2016.05.31

초록

타당한 설계홍수량의 결정은 하천관리에서 홍수에 의한 재해를 조절하는데 가장 중요한 사항이다. Clark 모형에서 집중시간과 저류상수는 첨두홍수량의 크기와 수문곡선의 형상에 영향을 미친다. 모형의 매개변수는 관측자료에 의해 보정되어야 하지만 관측자료의 부족으로 인하여 경험공식에 의하여 결정되고 있다. 본 연구는 안성천의 공도수위관측소 지점에서 실측수문자료에 의한 집중시간과 저류상수를 제시코자 하였다. 이를 위하여 관측치와 계산치의 평균제곱근오차 및 잔차를 산정하는 5개 기준을 제시하였다. 공도관측소지점에서 3개의 강우-유출사상으로부터 집중시간과 저류상수를 구하고 5개 기준에 의거 실측 수문곡선과 관측 수문곡선을 근거로 한 평균제곱근오차와 잔차를 산정하였다. 이를 통하여 관측수문자료와 Clark모형에 의한 결과를 근거로 집중시간과 저류상수를 결정하는 기준을 제시코자 하였다. 또한 도달시간-누가면적곡선식의 지수 값은 유역의 형상이 반영되는 값으로 결정하여야 함을 보여 주었다.

The determination of feasible design flood is the most important to control flood damage in river management. Concentration time and storage constant in the Clark unit hydrograph method mainly affects magnitude of peak flood and shape of hydrograph. Model parameters should be calibrated using observed discharge but due to deficiency of observed data the parameters have been adopted by empirical formula. This study is to suggest concentration time and storage constant based on the observed rainfall-runoff data at GongDo stage station in the Ansung river basin. To do this, five criteria have been suggested to compute root mean square error(RMSE) and residual of oserved value and computed one. Once concentration time and storage constant have been determined from three rainfall-runoff event selected at the station, the five criteria based on observed hydrograph and computed hydrograph by the Clark model have been computed to determine the value of concentration time and storage constant. A criteria has been proposed to determine concentration time and storage constant based on the results of the observed hydrograph and the Clark model. It has also been shown that an exponent value of concentration time-cumulative area curve should be determined based on the shape of watershed.

키워드

참고문헌

  1. Ahn, TJ and Choi, KH (2007). Determination of the Storage Coefficient for the Clark model based on the Observed Rainfall-Runoff data, Proc. 2007 Korea Resources Association Symp., KWRA, Seoul, Korea pp. 1454-1458. [Korean Literature]
  2. Bae, DH and Kim YJ (2015). Development of Concentration Time and Storage Coefficient Considering Regional Trend in Urban Stream Watershed, J. of Korea Water Resour. Assoc., 48(6), pp. 479-489. [Korean Literature] https://doi.org/10.3741/JKWRA.2015.48.6.479
  3. Che, D, Nangare, M, and Mays, LW (2014). Determination of Clark's Hydrograph Parameters for Watershed. J. of Hydrologic Engineering, 19(2), pp. 384-387. https://doi.org/10.1061/(ASCE)HE.1943-5584.0000796
  4. Clark, CO (1945). Storage and the Unit Hydrograph. ASCE, 110, pp. 1419-1446.
  5. Jeong, JH, Kim, SW, Yoon, YN (2007). Development of Estimation Method for Storage Coefficient, Proc. 2007 Korea Resources Association Symp., KWRA, Seoul, Korea pp. 135-143. [Korean Literature]
  6. Jeong, SW (2005). Development of Empirical Formulas for the Parameter Estimation of Clark's Watershed Flood Routing Models, Ph. D. dissertation, Korea Univ. Seoul, Korea. [Korean Literature]
  7. Jun, BH, et al. (2012). Hydrology, Yangseogak Publisher, pp. 280-284. [Korean Literature]
  8. Kim, NW and Lee, JE (2004). Catchment Response and Parameters of Clark Model, Proc. 2004 Korea Resources Association Symp., KWRA, Seoul, Korea pp. 1180-1192. [Korean Literature]
  9. Kwon, KD, Lee, JH, Kang, MJ and Jee, HK (2014). Effect of Estimation for Time of Concentration on the Design Flood, J. of Wetlands Research, 16(1), pp. 125-137. [Korean Literature] https://doi.org/10.17663/JWR.2014.16.1.125
  10. Yoo, C. (2009). A theoretical review of basin storage coefficient and concentration time using the Nash model, J. of Korea Resources Association. 42(3) pp. 235-246. [Korean Literature] https://doi.org/10.3741/JKWRA.2009.42.3.235
  11. Yoo, C, Lee, J, Park, C, and Jun, C (2014). Method for Estimating Concentration Time and Storage Coefficient of the Clark Model Using Rainfall-Runoff Measurements, J. of Hydrologic Engineering, 19(3), pp. 626-634. https://doi.org/10.1061/(ASCE)HE.1943-5584.0000828
  12. Yoon, TH, Kim, ST, and Park, JW (2005). On Refining of Parameters of Clark Model, J. of Korean Society Civil Engineers, 25(3), pp. 181-187 [Korean Literature]
  13. Yoon, Y. N. (2012). Hydrology, Chungmoongak Publisher, pp. 489-491. [Korean Literature]
  14. Yoon, SY and Hong, IP (1995). Improvement of the Parameter Estimating Method for the Clark model. J. of the Korean Society of Civil Engineer, 15(5), pp. 1287-1300. [Korean Literature]
  15. U.S. Soil Conservation Service (SCS) (1972). National Engineering Handbook, Sec. 4, Hydrology, U.S. Dept. of Agriculture, Washington, D.C.
  16. Subramanya, K. (1994). Engineering Hydrology, McGraw-Hill Office, pp. 181-182.