DOI QR코드

DOI QR Code

Analyzing Thinning Effects on Growth and Carbon Absorption for Cryptomeria japonica Stands Using Distance-Independent Growth Simulations

거리독립 생장예측 시뮬레이션기법 적용에 의한 삼나무임분의 임분생장 및 탄소고정에 미치는 간벌시업 효과 분석

  • Kwon, Kibeom (Department of Forest Sciences, Seoul National University) ;
  • Han, Hee (Department of Forest Sciences, Seoul National University) ;
  • Seol, Ara (Research Institute for Agriculture and Life Sciences, Seoul National University) ;
  • Chung, Hyejean (Department of Forest Sciences, Seoul National University) ;
  • Chung, Joosang (Department of Forest Sciences, Seoul National University)
  • 권기범 (서울대학교 산림과학부) ;
  • 한희 (서울대학교 산림과학부) ;
  • 설아라 (서울대학교 농업생명과학연구원) ;
  • 정혜진 (서울대학교 산림과학부) ;
  • 정주상 (서울대학교 산림과학부)
  • Received : 2015.10.02
  • Accepted : 2016.01.20
  • Published : 2016.03.31

Abstract

The objectives of this study were to infer the parameters of forest stand growth functions of STEMS for Cryptomeria japonica stands of Jeju Hannam Experimental Forest, Korea Forest Research Institute, and to investigate the effects of thinning regimes on the patterns of stand growth and carbon absorption. The forest stand growth functions for the potential diameter growth, modifier, crown ratio and mortality are the major ones composing the independent-tree/distance-free forest stand growth simulator, STEMS. The parameters were inferred using the sets of growth data obtained from stem analyses of 39 trees, chosen from 13 sample plots of the forest stands. The effects of thinning regimes on the patterns of stand growth and carbon absorption were investigated by simulating the stand growth patterns of the case study stand with 3 different thinning regimes: no-thinning, early thinning with low intensity and late thinning with high intensity using the simulator. According to the results of the analyses, the different thinning regimes cause significant effects on the growth patterns of average DBH, average height, diameter distribution and stand volume as well as the amount of carbon absorptions.

본 연구에서는 거리독립 임분생장 예측 시뮬레이터 STEMS를 기반으로 제주도 한남시험림 삼나무 임분에 대한 잠재직경생장함수, 수정함수, 수관율 및 고사함수를 추정하고, 이를 토대로 간벌시업에 따른 임분의 생장패턴 및 탄소흡수량의 변화를 예측하였다. 시뮬레이터를 구성하는 주요 함수는 연구대상지의 13개 표본점으로부터 39본의 표준목을 선발하여 수간석해에 따른 분석결과를 토대로 추정하였다. 이 시뮬레이터를 적용하여 사례연구 대상 임분에 대한 간벌시업체계를 무간벌 및 1회 간벌에 간벌의 시기 및 강도를 달리하는 3개의 시나리오로 편성하여 간벌시업이 임분생장 및 탄소흡수 효과에 미치는 영향을 분석하였다. 분석결과 간벌시업과 지위지수에 따라 임분의 평균 수고 및 흉고직경, 경급별 임목본수나 임분재적에 따른 생장패턴이나 탄소고정에 미치는 효과가 유의미한 것으로 나타났다.

Keywords

References

  1. Battaglia, M., Sandsm, P., White, D., and Mummery, D. 2004. CABALA: a linked carbon, water and nitrogen model of forest growth for silvicultural decision support. Forest Ecology and Management 193: 251-282. https://doi.org/10.1016/j.foreco.2004.01.033
  2. Belcher, D.M., Holdway, M.R., and Brand, G.J. 1982. A description of STEMS- the stand and tree evaluation and modeling system. Gen. Tech. Rep. NC-79. pp. 18.
  3. Chave, J., Andalo, C., Brown, S, Cairns, A., Chambers, J.Q., Eamus, D., Folster, H., Fromard, F., Higuchi, N., Kira, T., Lescure, J.-P., Nelson, B.W., Ogawa, H., Puig, H., Riera, B., and Yamakura, T. 2005. Tree allometry and improved estimation of carbon stocks and balance in tropical forests. Ecosystem Ecology 145: 87-99.
  4. Daniels, R.F. and Burkhart, H.E. 1975. Simulation of individual tree growth and stand development in managed loblolly pine plantations. Division of Forestry & Wildlife Resources, Virginia Polytechnic Institute and State University Publication FWS-5-75. pp. 69.
  5. Davis, L.S., Johnson, K.N., Bettinger, P., and Howard, T.E. 2001. Forest management. 4th ed. McGraw-Hill, New York. pp. 840.
  6. Hann, J.T., and Leary, R.A. 1979. Potential diameter growth functions. In a generalized forest growth projection system applied to the Lake States region. USDA Forest Service ? General Tehnical Report NC 49: 23-26.
  7. Holdaway, M.R., Leary, R.A., and Thompson, J.L. 1979. Estimating mean stand crown ratio from stand variables. In a generalized forest growth projection system applied to the Lake States region. USDA Forest Service ? General Tehnical Report NC 49: 27-30.
  8. IPCC. 2006. 2006 IPCC Guidelines for National Greenhouse Gas Inventories. pp. 326.
  9. Kirschbaum, M.U.F. 1999. CenW, a forest growth model with linked carbon, energy, nutrient and water cycles. Ecological Modelling 118: 17-59. https://doi.org/10.1016/S0304-3800(99)00020-4
  10. Korea Forest Research Institute. 2010. Carbon emission factors by korean major tree species for estimation of the greenhouse gas inventory on forests. KFRI Research report in 2010 10-25. pp. 125.
  11. Korea Forest Service. 2009. Standing tree volume, biomass and stand yield table.
  12. Kurz, W. and Appls, M. 1999. A 70-year retrospective analysis of carbon fluxes in the Canadian forest sector. Ecological Application 9: 526-547. https://doi.org/10.1890/1051-0761(1999)009[0526:AYRAOC]2.0.CO;2
  13. Kwon, S.D. and Chung, J.S. 2004. Development of individual-tree distance-independent simulation model for growth prediction of Pinus koraiensis stands. Journal of Korean Forest Society 93: 43-49.
  14. Lee, K.Y., Son, Y.M., Rho, D.K., and Kwon, S.D. 2002. Stem weight equations for six major tree species in Korea. Journal of Korean Forest Society 91: 206-212.
  15. Mäkelä, A. and Hari, P. 1986. Stand growth model based on carbon uptake and allocation in individual trees. Ecological Modelling 33: 205-229. https://doi.org/10.1016/0304-3800(86)90041-4
  16. Mesera, O.R., Garza-Caligaris, J.F., Kanninen, M., Karjalainen, T., Liski, J., Nabuurs, G.J., Pussiene, A., de Jong, B.H.J., and Mohren, G.M.J. 2003. Modeling carbon sequestration in afforestation, agroforestry and forest management projects: the CO2FIX V.2 approach. Ecological Modelling 164: 177-199. https://doi.org/10.1016/S0304-3800(02)00419-2
  17. Seo, J.H., Son, Y.M., Lee, K.H., Lee, W.K., and Son, Y.H. 2005. The estimation of stand biomass and net carbon removals using dynamic stand growth model. Journal of Korea Forestry Energy 24: 37-45.