DOI QR코드

DOI QR Code

DTN에서 노드 간 연결 가능성과 마스킹 연산을 이용한 중계노드 선정 기법

Relay Node Selection Method using Node-to-node Connectivity and Masking Operation in Delay Tolerant Networks

  • Jeong, Rae-jin (Interdisciplinary Program in Creative Engineering and Department of Computer Science Engineering, Korea University of Technology and Education) ;
  • Jeon, Il-Kyu (Interdisciplinary Program in Creative Engineering and Department of Computer Science Engineering, Korea University of Technology and Education) ;
  • Woo, Byeong-hun (Department of Computer Science Engineering, Korea University of Technology and Education) ;
  • Koo, Nam-kyoung (Department of Computer Science Engineering, Korea University of Technology and Education) ;
  • Lee, Kang-whan (Department of Computer Science Engineering, Korea University of Technology and Education)
  • Received : 2016.02.24
  • Accepted : 2016.03.21
  • Published : 2016.05.31

Abstract

본 논문에서는 이동 속성 정보를 활용하여 이동 노드간의 연결 가능성을 분석하고 마스킹 기법을 이용하여 이웃한 이동노드 중 목적 노드와 연결 가능성이 가장 높은 이동노드를 중계노드로 선정하는 EPCM(Enhanced Prediction-based Context-awareness Matrix)을 제안한다. 기존 Delay Tolerant Network (DTN)의 전송방식은 노드의 단순 이동성에 의존하여 목적노드로 메시지를 전송하게 된다. 이러한 경우 목적노드와의 연결성이 낮은 이동노드를 중계노드로 선정하게 되면 이동노드의 메시지 저장 및 처리 능력 제한으로 인하여 전송 지연 또는 패킷 손실의 원인이 된다. 본 논문의 제안된 알고리즘에서는 이동노드의 속도와 방향 속성 정보를 고려하여 목적노드와의 연결성을 계산하고 마스킹 연산을 활용하여 가장 높은 연결 가능성을 가지고 있는 중계노드를 선정하여 목적 노드까지 메시지를 전달하게 된다. 모의실험에서 Epidemic 및 PROPHET 알고리즘과 제안하는 알고리즘의 패킷 전송률을 비교한 결과 제안하는 알고리즘이 노드의 이동 속성을 고려한 연결성으로 보다 높은 패킷 전송률을 보여주었다.

This paper propose an improving relay node selection method for node-to-node connectivity. This concern with the mobility and analysis of deployed for masking operation using highest connectivity node. The major of Delay Tolerant Network (DTN) routing protocols make use of simple forwarding approach to transmit the message depend on the node's mobility. In this cases, the selection of the irrelevant mobile node induced the delay and packet delivery loss caused by limiting buffer size and computational power of node. Also the proposed algorithm provides the node connectivity considering the mobility and direction select the highest connectivity node from neighbor node using masking operation. From the simulation results, the proposed algorithm compared the packet delivery ratio with PROPHET and Epidemic. The proposed Enhanced Prediction-based Context-awareness Matrix(EPCM) algorithm shows an advantage packet delivery ratio even with selecting relay node according to mobility and direction.

Keywords

References

  1. M. R. Schurgot, C. Comaniciu and K. Jaffres-Runser, "Beyond Traditional DTN Routing : Social Networks for Opportunistic Communication," IEEE Communications Magazine, vol. 50, no. 7, pp. 155-162, July 2012. https://doi.org/10.1109/MCOM.2012.6231292
  2. L. Pelusi, A. Passarella and M. Conti, "Opportunistic Networking : Data Forwarding in Disconnected Mobile AdHoc Networks," IEEE Communications Magazine, vol. 44, no. 11, pp.134-141, Nov. 2006. https://doi.org/10.1109/MCOM.2006.248176
  3. S. Ehsan, K. Bradford, M. Brugger, B. Hamdaoui, Y. Kovchegov, D. Johnson and M. Louhaichi, "Design and Analysis of Delay-Tolerant Sensor Networks for Monitoring and Tracking Free-Roaming Animals," IEEE Transactions on Wireless Communications, vol. 11, no. 3, pp.1220-1227, Mar. 2012. https://doi.org/10.1109/TWC.2012.012412.111405
  4. C. Quadri, D. Maggiorini, S. Gaito and G. P. Rossi, "On the Scalability of Delay-Tolerant Routing Protocols in Urban Environment," Wireless Days (WD), 2011 IFIP, pp.1-6, Oct. 2011.
  5. N. Uchida, N. Kawamura, G. Sato, and Y. Shibata, "Delay Tolerant Networking with Data Triage Method based on Emergent User Policies for Disaster Information Network System", Mobile Information Systems, vol. 10, no. 4, pp.347-359, Oct. 2014. https://doi.org/10.1155/2014/495750
  6. A. Vahdat and D. Becker, "Epidemic Routing for Partially-Connected Ad Hoc Networks," Duck Univ. tech. rep. CS-2000-06, 2000.
  7. A. Lindgren, A. Doria, and O. Schelen, "Probabilistic routingin intermittently connected networks," in Service Assurancewith Partial and Intermittent Resources, Springer, Berlin Heidelberg, pp 239-254, 2004.
  8. P. Hui, J. Crowcroft and E. Yoneki, "BUBBLE Rap: Social-Based Forwarding in Delay Tolerant Networks," IEEE Transactions on Mobile Computing, vol. 10, no. 11, pp. 1576-1589, Dec. 2010. https://doi.org/10.1109/TMC.2010.246