Abstract
This paper introduces a risk graph which is one method for determining the SIL as a measure of the effectiveness of signaling system. The purpose of this research is to make up for the weakness of the qualitative determination, which has input value ambiguity and a boundary problem in the SIL range. The fuzzy input valuable consists of consequence, exposure, avoidance and demand rate. The fuzzy inference produces forty eight fuzzy rule by adapting the calibrated risk graph in the IEC 61511. The Max-min composition is utilized for the fuzzy inference. The result of the fuzzy inference is the fuzzy value. Therefore, using the de-fuzzification method, the result should be converted to a crisp value that can be utilized for real projects. Ultimately, the safety requirement for hazard is identified by proposing a SIL result with a tolerable hazard rate. For the validation the results of the proposed method, the fuzzy risk graph model is compared with the safety analysis of the signaling system in CENELEC SC 9XA WG A10 report.
철도 신호 시스템의 안전 확보 기준으로 사용되는 안전무결성수준(SIL, Safety Integrity Level) 할당에 사용되는 기존 정성적 평가방법인 리스크 그래프에 대하여 소개하고, 정성적 평가의 문제점인 입력 변수의 모호성 및 안전무결성수준간 경계성 문제에 대하여 퍼지 이론 적용을 통해 문제점을 보완하는 것을 목적으로 한다. 본 모델의 퍼지 입력변수는 4가지인 심각도, 노출도, 회피도, 요구율로 구성되며, 퍼지추론(Fuzzy Inference)은 IEC 61511의 계량적 리스크 그래프를 적용하여 48개의 퍼지 규칙을 생성한다. 퍼지추론은 최대 최소 합성(Max-Min Composition)의 퍼지관계 합성연산을 적용한다. 추론 모델을 통해 도출된 최종적인 추론 결과는 퍼지 값이므로 실제 상황에 적용 가능하도록 다시 실수 값으로 변환하는 역 퍼지화 과정을 통해 최종 출력값인 안전무결성수준과 그에 해당하는 허용 해저드율을 생성하여, 최종적인 해당 해저드에 대한 안전성 요구사항을 도출한다. 마지막으로 본 평가모델 검증을 위해 CENELEC SC 9XA WG A10 보고서에 소개된 단선구간에서의 신호시스템을 대상으로 한 안전성 평가 결과와 비교한다.