DOI QR코드

DOI QR Code

Immunomodulatory Effects of Ambroxol on Airway Hyperresponsiveness and Inflammation

  • Katsuyuki Takeda (Division of Cell Biology, Department of Pediatrics, National Jewish Health) ;
  • Nobuaki Miyahara (Division of Cell Biology, Department of Pediatrics, National Jewish Health) ;
  • Shigeki Matsubara (Division of Cell Biology, Department of Pediatrics, National Jewish Health) ;
  • Christian Taube (Division of Cell Biology, Department of Pediatrics, National Jewish Health) ;
  • Kenichi Kitamura (Department of Hematology, Oncology, Allergy and Respiratory Medicine, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences) ;
  • Astushi Hirano (Department of Hematology, Oncology, Allergy and Respiratory Medicine, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences) ;
  • Mitsune Tanimoto (Department of Hematology, Oncology, Allergy and Respiratory Medicine, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences) ;
  • Erwin W. Gelfand (Division of Cell Biology, Department of Pediatrics, National Jewish Health)
  • 투고 : 2016.02.12
  • 심사 : 2016.05.27
  • 발행 : 2016.06.30

초록

Ambroxol is used in COPD and asthma to increase mucociliary clearance and regulate surfactant levels, perhaps through anti-oxidant and anti-inflammatory activities. To determine the role and effect of ambroxol in an experimental model of asthma, BALB/c mice were sensitized to ovalbumin (OVA) followed by 3 days of challenge. Airway hyperresponsiveness (AHR), lung cell composition and histology, and cytokine and protein carbonyl levels in bronchoalveolar lavage (BAL) fluid were determined. Ambroxol was administered either before the first OVA challenge or was begun after the last allergen challenge. Cytokine production levels from lung mononuclear cells (Lung MNCs) or alveolar macrophages (AM) were also determined. Administration of ambroxol prior to challenge suppressed AHR, airway eosinophilia, goblet cell metaplasia, and reduced inflammation in subepithelial regions. When given after challenge, AHR was suppressed but without effects on eosinophil numbers. Levels of IL-5 and IL-13 in BAL fluid were decreased when the drug was given prior to challenge; when given after challenge, increased levels of IL-10 and IL-12 were detected. Decreased levels of protein carbonyls were detected in BAL fluid following ambroxol treatment after challenge. In vitro, ambroxol increased levels of IL-10, IFN-γ, and IL-12 from Lung MNCs and AM, whereas IL-4, IL-5, and IL-13 production was not altered. Taken together, ambroxol was effective in preventing AHR and airway inflammation through upregulation of Th1 cytokines and protection from oxidative stress in the airways.

키워드

과제정보

This study was supported by National Institute of Health grant HL-36577 (to E.W.G.). The content is solely the responsibility of the authors and does not necessarily represent the official views of the NHLBI or the NIH. The authors thank Diana Nabighian for assistance in preparing the manuscript.

참고문헌

  1. Anandan, C., U. Nurmatov, O. C. van Schayck, and A. Sheikh. 2010. Is the prevalence of asthma declining? Systematic review of epidemiological studies. Allergy 65: 152-167.  https://doi.org/10.1111/j.1398-9995.2009.02244.x
  2. Thomas, M. 2015. Why aren't we doing better in asthma: time for personalised medicine? NPJ Prim. Care Respir. Med. 25: 15004. 
  3. Williams, O. W., A. Sharafkhaneh, V. Kim, B. F. Dickey, and C. M. Evans. 2006. Airway mucus: From production to secretion. Am. J. Respir. Cell Mol. Biol. 34: 527-536.  https://doi.org/10.1165/rcmb.2005-0436SF
  4. Lai, H. Y., and D. F. Rogers. 2010. Mucus hypersecretion in asthma: intracellular signaling pathways as targets for pharmacotherapy. Curr. Opin. Allergy Clin. Immunol. 10: 67-76.  https://doi.org/10.1097/ACI.0b013e328334643a
  5. Pope, S. M., E. B. Brandt, A. Mishra, S. P. Hogan, N. Zimmermann, K. I. Matthaei, P. S. Foster, and M. E. Rothenberg. 2001. IL-13 induces eosinophil recruitment into the lung by an IL-5- and eotaxin-dependent mechanism. J. Allergy Clin. Immunol. 108: 594-601.  https://doi.org/10.1067/mai.2001.118600
  6. Morcillo, E. J., and J. Cortijo. 2006. Mucus and MUC in asthma. Curr. Opin. Pulm. Med. 12: 1-6.  https://doi.org/10.1097/01.mcp.0000198064.27586.37
  7. Ishibashi, Y., F. Kobayashi, A. Idesawa, A. Taniguchi, and S. Matsuzawa. 2004. Effects of carbocisteine on altered activities of glycosidase and glycosyltransferase and expression of Muc5ac in SO2-exposed rats. Eur. J. Pharmacol. 487: 7-15.  https://doi.org/10.1016/j.ejphar.2003.12.038
  8. Wills-Karp, M., J. Luyimbazi, X. Xu, B. Schofield, T. Y. Neben, C. L. Karp, and D. D. Donaldson. 1998. Interleukin-13: Central mediator of allergic asthma. Science 282: 2258-2261.  https://doi.org/10.1126/science.282.5397.2258
  9. Takeyama, K., J. V. Fahy, and J. A. Nadel. 2001. Relationship of epidermal growth factor receptors to goblet cell production in human bronchi. Am. J. Respir. Crit. Care Med. 163: 511-516.  https://doi.org/10.1164/ajrccm.163.2.2001038
  10. Malerba, M., A. Ponticiello, A. Radaeli, G. Bensi, and V. Grassi. 2004. Effect of twelve-months therapy with oral ambroxol in preventing exacerbations in patients with COPD. Double-blind, randomized, multicenter, placebo-controlled study (the AMETHIST Trial). Pulm. Pharmacol. Ther. 17: 27-34.  https://doi.org/10.1016/j.pupt.2003.08.004
  11. Ratjen, F., R. Wonne, H. G. Posselt, B. Stover, D. Hofmann, and S. W. Bender. 1985. A double-blind placebo controlled trial with oral ambroxol and N- acetylcysteine for mucolytic treatment in cystic fibrosis. Eur. J. Pediatr. 144: 374-378.  https://doi.org/10.1007/BF00441781
  12. Malerba, M., and B. Ragnoli. 2008. Ambroxol in the 21st century: Pharmacological and clinical update. Expert Opin. Drug Metab. Toxicol. 4: 1119-1129.  https://doi.org/10.1517/17425255.4.8.1119
  13. Paleari, D., G. A. Rossi, G. Nicolini, and D. Olivieri. 2011. Ambroxol: a multifaceted molecule with additional therapeutic potentials in respiratory disorders of childhood. Expert Opin. Drug. Discov. 6: 1203-1214.  https://doi.org/10.1517/17460441.2011.629646
  14. Melillo, G., and G. Cocco. 1986. Ambroxol decreases bronchial hyperreactivity. Eur. J. Respir. Dis. 69: 316-320. 
  15. Spicak, V., S. Kacirek, and P. Pohunek. 1987. Treatment of bronchial obstruction in asthmatic children. Bull. Eur. Physiopathol. Respir. 10: 107s-109s. 
  16. Huang, J., J. Xu, L. Tian, and L. Zhong. 2014. A thioredoxin reductase and/or thioredoxin system-based mechanism for antioxidant effects of ambroxol. Biochimie. 97: 92-103.  https://doi.org/10.1016/j.biochi.2013.09.024
  17. Seifart, C., U. Clostermann, U. Seifart, B. Muller, C. Vogelmeier, P. von Wichert, and H. Fehrenbach. 2005. Cell-specific modulation of surfactant proteins by ambroxol treatment. Toxicol.Appl. Pharmacol. 203: 27-35.  https://doi.org/10.1016/j.taap.2004.07.015
  18. Seagrave, J., H. H. Albrecht, D. B. Hill, D. F. Rogers, and G. Solomon. 2012. Effects of guaifenesin, N-acetylcysteine, and ambroxol on MUC5AC and mucociliary transport in primary differentiated human tracheal-bronchial cells. Respir. Res. 13: 98. 
  19. Laoag-Fernandez, J. B., A. M. Fernandez, and T. Maruo. 2000. Antenatal use of ambroxol for the prevention of infant respiratory distress syndrome. J. Obstet. Gynaecol. Res. 26: 307-312.  https://doi.org/10.1111/j.1447-0756.2000.tb01327.x
  20. Gonzalez Garay, A. G., L. Reveiz, L. Velasco Hidalgo, and C. Solis Galicia. 2014. Ambroxol for women at risk of preterm birth for preventing neonatal respiratory distress syndrome. Cochrane Database Syst. Rev. 10: CD009708. 
  21. Su, X., L. Wang, Y. Song, and C. Bai. 2004. Inhibition of inflammatory responses by ambroxol, a mucolytic agent, in a murine model of acute lung injury induced by lipopolysaccharide. Intensive Care Med. 30: 133-140.  https://doi.org/10.1007/s00134-003-2001-y
  22. Gibbs, B. F. 2009. Differential modulation of IgE-dependent activation of human basophils by ambroxol and related secretolytic analogues. Int. J. Immunopathol. Pharmacol. 22: 919-927.  https://doi.org/10.1177/039463200902200407
  23. Dong, C., G. Wang, B. Li, K. Xiao, Z. Ma, H. Huang, X. Wang, and C. Bai. 2012. Anti-asthmatic agents alleviate pulmonary edema by upregulating AQP1 and AQP5 expression in the lungs of mice with OVA-induced asthma. Respir. Physiol. Neurobiol. 181: 21-28.  https://doi.org/10.1016/j.resp.2011.12.008
  24. Takeda, K., E. Hamelmann, A. Joetham, L. D. Shultz, G. L. Larsen, C. G. Irvin, and E. W. Gelfand. 1997. Development of eosinophilic airway inflammation and airway hyperresponsiveness in mast cell-deficient mice. J. Exp. Med. 186: 449-454.  https://doi.org/10.1084/jem.186.3.449
  25. Takeda, K., N. Miyahara, T. Kodama, C. Taube, A. Balhorn, A. Dakhama, K. Kitamura, A. Hirano, M. Tanimoto, and E. W. Gelfand. 2005. S-carboxymethylcysteine normalises airway responsiveness in sensitised and challenged mice. Eur. Respir. J. 26: 577-585.  https://doi.org/10.1183/09031936.05.00090304
  26. Ritter, C., A. A. da Cunha I. C. Echer, M. Andrades, A. Reinke, N. Lucchiari, J. Rocha, E. L. Streck, S. Menna-Barreto, J. C. Moreira, and F. Dal-Pizzol. 2006. Effects of N-acetylcysteine plus deferoxamine in lipopolysaccharide-induced acute lung injury in the rat. Crit. Care Med. 34: 471-477.  https://doi.org/10.1097/01.CCM.0000199069.19193.89
  27. Houtmeyers, E., R. Gosselink, G. Gayan-Ramirez, and M. Decramer. 1999. Effects of drugs on mucus clearance. Eur. Respir. J. 14: 452-467.  https://doi.org/10.1034/j.1399-3003.1999.14b35.x
  28. Himmel, W., E. Hummers-Pradier, H. Schumann, and M. M. Kochen. 2001. The predictive value of asthma medications to identify individuals with asthma--a study in German general practices. Br. J. Gen. Pract. 472: 879-883. 
  29. Lemanske, R.F. Jr, and W. W. Busse. 2006. Asthma: Factors underlying inception, exacerbation, and disease progression. J. Allergy Clin. Immunol. 117: S456-461.  https://doi.org/10.1016/j.jaci.2005.07.006
  30. O'Byrne, P. M., M. D. Inman, and E. Adelroth. 2004. Reassessing the Th2 cytokine basis of asthma. Trends Pharmacol. Sci. 25: 244-248.  https://doi.org/10.1016/j.tips.2004.03.008
  31. Schwarze, J., E. Hamelmann, G. Cieslewicz, A. Tomkinson, A. Joetham, K. Bradley, and E. W. Gelfand. 1998. Local treatment with IL-12 is an effective inhibitor of airway hyperresponsiveness and lung eosinophilia after airway challenge in sensitized mice. J. Allergy Clin. Immunol. 102: 86-93.  https://doi.org/10.1016/S0091-6749(98)70058-2
  32. Matsumoto, K., H. Inoue, M. Tsuda, Y. Honda, A. Kibe, K. Machida, Y. Yoshiura, and Y. Nakanishi. 2005. Different roles of interleukin-10 in onset and resolution of asthmatic responses in allergen-challenged mice. Respirology 10: 18-26.  https://doi.org/10.1111/j.1440-1843.2005.00647.x
  33. Ma, X., W. Yan, H. Zheng, Q. Du, L. Zhang, Y. Ban, N. Li, and F. Wei. 2015. Regulation of IL-10 and IL-12 production and function in macrophages and dendritic cells. F1000Res. pii: F1000 Faculty Rev-1465. 
  34. Bowler, R. P., and J. D. Crapo. 2002. Oxidative stress in allergic respiratory diseases. J. Allergy Clin. Immunol. 110: 349-356.  https://doi.org/10.1067/mai.2002.126780
  35. Park, J. W., C. Taube, C. Swasey, T. Kodama, A. Joetham, A. Balhorn, K. Takeda, N. Miyahara, C. B. Allen, A. Dakhama, S. H. Kim, C. A. Dinarello, and E. W. Gelfand. 2004. Complement activation is critical to airway hyperresponsiveness after acute ozone exposure. Am. J. Respir. Crit. Care Med. 169: 726-732.  https://doi.org/10.1164/rccm.200307-1042OC
  36. Comhair, S. A., K. S. Ricci, M. Arroliga, A. R. Lara, R. A. Dweik, W. Song, S. L. Hazen, E. R. Bleecker, W. W. Busse, K. F. Chung, B. Gaston, A. Hastie, M. Hew, N. Jarjour, W. Moore, S. Peters, W. G. Teague, S. E. Wenzel, and S. C. Erzurum. 2005. Correlation of systemic superoxide dismutase deficiency to airflow obstruction in asthma. Am. J. Respir. Crit. Care Med. 172: 306-313.  https://doi.org/10.1164/rccm.200502-180OC
  37. Blesa, S., J. Cortijo, M. Mata, A. Serrano, D. Closa, F. Santangelo, J. M. Estrela, J. Suchankova, and E. J. Morcillo. 2003. Oral N-acetylcysteine attenuates the rat pulmonary inflammatory response to antigen. Eur. Respir. J. 21: 394-400.  https://doi.org/10.1183/09031936.03.00039602
  38. Larsen, G. L., C.W. White, K. Takeda, J. E. Loader, D. D. Nguyen, A. Joetham, Y. Groner, and E. W. Gelfand. 2000. Mice that overexpress Cu/Zn superoxide dismutase are resistant to allergen-induced changes in airway control. Am. J. Physiol. Lung Cell. Mol. Physiol. 279: L350-L359.  https://doi.org/10.1152/ajplung.2000.279.2.L350
  39. Rangasamy, T., J. Guo, W. A. Mitzner, J. Roman, A. Singh, A. D. Fryer, M. Yamamoto, T. W. Kensler, R. M. Tuder, S. N. Georas, and S. Biswal. 2005. Disruption of Nrf2 enhances susceptibility to severe airway inflammation and asthma in mice. J. Exp. Med. 202: 47-59.  https://doi.org/10.1084/jem.20050538
  40. Teramoto, S., M. Suzuki, E. Ohga, T. Ishii, H. Matsui, T. Matsuse, and Y. Ouchi. 1999. Effects of ambroxol on spontaneous or stimulated generation of reactive oxygen species by bronchoalveolar lavage cells harvested from patients with or without chronic obstructive pulmonary diseases. Pharmacology 3: 135-141.  https://doi.org/10.1159/000028313
  41. Gillissen, A., A. Bartling, S. Schoen, and G. Schultze-Werninghaus. 1997. Antioxidant function of ambroxol in mononuclear and polymorphonuclear cells in vitro. Lung 175: 235-242.  https://doi.org/10.1007/PL00007570
  42. Peroni, D. G., S. Moser, G. Gallo, R. Pigozzi, L. Tenero, L. Zanoni, A. L. Boner, and G. L. Piacentini. 2013. Ambroxol inhibits neutrophil respiratory burst activated by alpha chain integrin adhesion. Int. J. Immunopathol. Pharmacol. 26: 883-887.  https://doi.org/10.1177/039463201302600406
  43. Chitano, P., A. Di Stefano, S. Finotto, G. Zavattini, P. Maestrelli, C. Mapp, L. M. Fabbri, and L. Allegra. 1989. Ambroxol inhibits airway hyperresponsiveness induced by ozone in dogs. Respiration 55: S74-S78.  https://doi.org/10.1159/000195755
  44. Buss, I. H., B. A. Darlow, and C. C. Winterbourn. 2000. Elevated protein carbonyls and lipid peroxidation products correlating with myeloperoxidase in tracheal aspirates from premature infants. Pediatr. Res. 47: 640-645.  https://doi.org/10.1203/00006450-200005000-00014
  45. Frossi, B., M. De Carli, M. Piemonte, and C. Pucillo. 2008. Oxidative microenvironment exerts an opposite regulatory effect on cytokine production by Th1 and Th2 cells. Mol. Immunol. 45: 58-64.  https://doi.org/10.1016/j.molimm.2007.05.008
  46. Obata, F., A. Hoshino, and A. Toyama. 2006. Hydrogen peroxide increases interleukin-12 p40/p70 molecular ratio and induces Th2-predominant responses in mice. Scand. J. Immunol. 63: 125-130. https://doi.org/10.1111/j.1365-3083.2005.01718.x