DOI QR코드

DOI QR Code

Roles of IL-33 in Resistance and Tolerance to Systemic Candida albicans Infections

  • Sang Jun Park (Department of Surgery, Ulsan University Hospital, School of Medicine, University of Ulsan) ;
  • Hong Rae Cho (Department of Surgery, Ulsan University Hospital, School of Medicine, University of Ulsan) ;
  • Byungsuk Kwon (Biomedical Research Center, Ulsan University Hospital, School of Medicine, University of Ulsan)
  • 투고 : 2016.03.14
  • 심사 : 2016.04.12
  • 발행 : 2016.06.30

초록

IL-33 is a multifunctional cytokine that is released in response to a variety of intrinsic and extrinsic stimuli. The role of IL-33 in Candida albicans infections is just beginning to be revealed. This cytokine has beneficial effects on host defense against systemic C. albicans infections, and it promotes resistance mechanisms by which the immune system eliminates the invading fungal pathogens; and it also elevates host tolerance by reducing the inflammatory response and thereby, potentially, tissue damage. Thus, IL-33 is classified as a cytokine that has evolved functionally to protect the host from damage by pathogens and immunopathology.

키워드

과제정보

This work was supported by a grant from the National Research Foundation of Korea (funded by the Republic of Korea Ministry of Education, Science, and Technology Grant NRF-2013R1A1A1A01058298).

참고문헌

  1. Lionakis, M. S. 2014. New insights into innate immune control of systemic candidiasis. Med. Mycol. 52: 555-564. https://doi.org/10.1093/mmy/myu029
  2. Cassone, A. 2013. Development of vaccines for Candida albicans: fighting a skilled transformer. Nat. Rev. Microbiol. 11: 884-891. https://doi.org/10.1038/nrmicro3156
  3. Horn, D. L., D. Neofytos, E. J. Anaissie, J. A. Fishman, W. J. Steinbach, A. J. Olyaei, K. A. Marr, M. A. Pfaller, C. H. Chang, and K. M. Webster. 2009. Epidemiology and outcomes of candidemia in 2019 patients: data from the prospective antifungal therapy alliance registry. Clin. Infect. Dis. 48: 1695-1703. https://doi.org/10.1086/599039
  4. Medzhitov, R., D. S. Schneider, and M. P. Soares. 2012. Disease tolerance as a defense strategy. Science 335: 936-941. https://doi.org/10.1126/science.1214935
  5. Schmitz, J., A. Owyang, E. Oldham, Y. Song, E. Murphy, T. K. McClanahan, G. Zurawski, M. Moshrefi, J. Qin, X. Li, D. M. Gorman, J. F. Bazan, and R. A. Kastelein. 2005. IL-33, an interleukin-1-like cytokine that signals via the IL-1 receptorrelated protein ST2 and induces T helper type 2-associated cytokines. Immunity 23: 479-490. https://doi.org/10.1016/j.immuni.2005.09.015
  6. Liew, F. Y., N. I. Pitman, and I. B. McInnes. 2010. Diseaseassociated functions of IL-33: the new kid in the IL-1 family. Nat. Rev. Immunol. 10: 103-110. https://doi.org/10.1038/nri2692
  7. Licona-Limon, P., L. K. Kim, N. W. Palm, and R. A. Flavell. 2013. TH2, allergy and group 2 innate lymphoid cells. Nat. Immunol. 14: 536-542. https://doi.org/10.1038/ni.2617
  8. Le, H., W. Kim, J. Kim, H. R. Cho, and B. Kwon. 2013. Interleukin-33: a mediator of inflammation targeting hematopoietic stem and progenitor cells and their progenies. Front. Immunol. 4: 104.
  9. Sonnenberg, G. F., and D. Artis. 2015. Innate lymphoid cells in the initiation, regulation and resolution of inflammation. Nat. Med. 21: 698-708. https://doi.org/10.1038/nm.3892
  10. Villarreal, D. O., M. C. Wise, J. N. Walters, E. L. Reuschel, M. J. Choi, N. Obeng-Adjei, J. Yan, M. P. Morrow, and D. B. Weiner. 2014. Alarmin IL-33 acts as an immunoadjuvant to enhance antigen-specific tumor immunity. Cancer Res. 74: 1789-1800. https://doi.org/10.1158/0008-5472.CAN-13-2729
  11. Gao, X., X. Wang, Q. Yang, X. Zhao, W. Wen, G. Li, J. Lu, W. Qin, Y. Qi, F. Xie, J. Jiang, C. Wu, X. Zhang, X. Chen, H. Turnquist, Y. Zhu, and B. Lu. 2015. Tumoral expression of IL-33 inhibits tumor growth and modifies the tumor microenvironment through CD8+ T and NK cells. J. Immunol. 194: 438-445. https://doi.org/10.4049/jimmunol.1401344
  12. Kim, J., W. Kim, U. J. Moon, H. J. Kim, H. J. Choi, J. I. Sin, N. H. Park, H. R. Cho, and B. Kwon. 2016. Intratumorally establishing type 2 innate lymphoid cells blocks tumor growth. J. Immunol. 196: 2410-2423. https://doi.org/10.4049/jimmunol.1501730
  13. Bonilla, W. V., A. Frohlich, K. Senn, S. Kallert, M. Fernandez, S. Johnson, M. Kreutzfeldt, A. N. Hegazy, C. Schrick, P. G. Fallon, R. Klemenz, S. Nakae, H. Adler, D. Merkler, M. Lohning, and D. D. Pinschewer. 2012. The alarmin interleukin-33 drives protective antiviral CD8+ T cell responses. Science 335: 984-989. https://doi.org/10.1126/science.1215418
  14. Schiering, C., T. Krausgruber, A. Chomka, A. Frohlich, K. Adelmann, E. A. Wohlfert, J. Pott, T. Griseri, J. Bollrath, A. N. Hegazy, O. J. Harrison, B. M. Owens, M. Lohning, Y. Belkaid, P. G. Fallon, and F. Powrie. 2014. The alarmin IL-33 promotes regulatory T-cell function in the intestine. Nature 513: 564-568. https://doi.org/10.1038/nature13577
  15. Morita, H., K. Arae, H. Unno, K. Miyauchi, S. Toyama, A. Nambu, K. Oboki, T. Ohno, K. Motomura, A. Matsuda, S. Yamaguchi, S. Narushima, N. Kajiwara, M. Iikura, H. Suto, A. N. McKenzie, T. Takahashi, H. Karasuyama, K. Okumura, M. Azuma, K. Moro, C. A. Akdis, S. J. Galli, S. Koyasu, M. Kubo, K. Sudo, H. Saito, K. Matsumoto, and S. Nakae. 2015. An interleukin-33-mast cell-interleukin-2 axis suppresses papain-induced allergic inflammation by promoting regulatory T cell numbers. Immunity 43: 175-186. https://doi.org/10.1016/j.immuni.2015.06.021
  16. Kolodin, D., P. N. van, C. Li, A. M. Magnuson, D. Cipolletta, C. M. Miller, A. Wagers, R. N. Germain, C. Benoist, and D. Mathis. 2015. Antigen- and cytokine-driven accumulation of regulatory T cells in visceral adipose tissue of lean mice. Cell Metab. 21: 543-557. https://doi.org/10.1016/j.cmet.2015.03.005
  17. Arpaia, N., J. A. Green, B. Moltedo, A. Arvey, S. Hemmers, S. Yuan, P. M. Treuting, and A. Y. Rudensky. 2015. A distinct function of regulatory T cells in tissue protection. Cell 162: 1078-1089. https://doi.org/10.1016/j.cell.2015.08.021
  18. Molofsky, A. B., G. F. Van, H. E. Liang, S. J. Van Dyken, J. C. Nussbaum, J. Lee, J. A. Bluestone, and R. M. Locksley. 2015. Interleukin-33 and interferon-gamma counter-regulate group 2 innate lymphoid cell activation during immune rerturbation. Immunity 43: 161-174. https://doi.org/10.1016/j.immuni.2015.05.019
  19. Moro, K., H. Kabata, M. Tanabe, S. Koga, N. Takeno, M. Mochizuki, K. Fukunaga, K. Asano, T. Betsuyaku, and S. Koyasu. 2016. Interferon and IL-27 antagonize the function of group 2 innate lymphoid cells and type 2 innate immune responses. Nat. Immunol. 17: 76-86. https://doi.org/10.1038/ni.3309
  20. Duerr, C. U., C. D. McCarthy, B. C. Mindt, M. Rubio, A. P. Meli, J. Pothlichet, M. M. Eva, J. F. Gauchat, S. T. Qureshi, B. D. Mazer, K. L. Mossman, D. Malo, A. M. Gamero, S. M. Vidal, I. L. King, M. Sarfati, and J. H. Fritz. 2016. Type I interferon restricts type 2 immunopathology through the regulation of group 2 innate lymphoid cells. Nat. Immunol. 17: 65-75. https://doi.org/10.1038/ni.3308
  21. Le, H. T., V. G. Tran, W. Kim, J. Kim, H. R. Cho, and B. Kwon. 2012. IL-33 priming regulates multiple steps of the neutrophil-mediated anti-Candida albicans response by modulating TLR and dectin-1 signals. J. Immunol. 189: 287-295. https://doi.org/10.4049/jimmunol.1103564
  22. Alves-Filho, J. C., F. Sonego, F. O. Souto, A. Freitas, W. A. Verri, Jr., M. uxiliadora-Martins, A. Basile-Filho, A. N. McKenzie, D. Xu, F. Q. Cunha, and F. Y. Liew. 2010. Interleukin-33 attenuates sepsis by enhancing neutrophil influx to the site of infection. Nat. Med. 16: 708-712. https://doi.org/10.1038/nm.2156
  23. Lionakis, M. S., M. Swamydas, B. G. Fischer, T. S. Plantinga, M. D. Johnson, M. Jaeger, N. M. Green, A. Masedunskas, R. Weigert, C. Mikelis, W. Wan, C. C. Lee, J. K. Lim, A. Rivollier, J. C. Yang, G. M. Laird, R. T. Wheeler, B. D. Alexander, J. R. Perfect, J. L. Gao, B. J. Kullberg, M. G. Netea, and P. M. Murphy. 2013. CX3CR1-dependent renal macrophage survival promotes Candida control and host survival. J. Clin. Invest 123: 5035-5051. https://doi.org/10.1172/JCI71307
  24. Ngo, L. Y., S. Kasahara, D. K. Kumasaka, S. E. Knoblaugh, A. Jhingran, and T. M. Hohl. 2014. Inflammatory monocytes mediate early and organ-specific innate defense during systemic candidiasis. J. Infect. Dis. 209: 109-119. https://doi.org/10.1093/infdis/jit413
  25. Tran, V. G., H. J. Kim, J. Kim, S. W. Kang, U. J. Moon, H. R. Cho, and B. Kwon. 2015. IL-33 Enhances Host Tolerance to Candida albicans Kidney Infections through Induction of IL- 13 Production by CD4+ T Cells. J. Immunol. 194: 4871-4879. https://doi.org/10.4049/jimmunol.1402986
  26. Coste, A., M. Dubourdeau, M. D. Linas, S. Cassaing, J. C. Lepert, P. Balard, S. Chalmeton, J. Bernad, C. Orfila, J. P. Seguela, and B. Pipy. 2003. PPARgamma promotes mannose receptor gene expression in murine macrophages and contributes to the induction of this receptor by IL-13. Immunity 19: 329-339. https://doi.org/10.1016/S1074-7613(03)00229-2
  27. Gales, A., A. Conduche, J. Bernad, L. Lefevre, D. Olagnier, M. Beraud, G. Martin-Blondel, M. D. Linas, J. Auwerx, A. Coste, and B. Pipy. 2010. PPARgamma controls Dectin-1 expression required for host antifungal defense against Candida albicans. PLoS Pathog. 6: e1000714.
  28. Kim, J., W. Kim, H. T. Le, U. J. Moon, V. G. Tran, H. J. Kim, S. Jung, Q. T. Nguyen, B. S. Kim, J. B. Jun, H. R. Cho, and B. Kwon. 2014. IL-33-induced hematopoietic stem and progenitor cell mobilization depends upon CCR2. J. Immunol. 193: 3792-3802. https://doi.org/10.4049/jimmunol.1400176
  29. Majer, O., C. Bourgeois, F. Zwolanek, C. Lassnig, D. Kerjaschki, M. Mack, M. Muller, and K. Kuchler. 2012. Type I interferons promote fatal immunopathology by regulating inflammatory monocytes and neutrophils during Candida infections. PLoS Pathog. 8: e1002811.
  30. Sakai, N., H. L. Van Sweringen, R. C. Quillin, R. Schuster, J. Blanchard, J. M. Burns, A. D. Tevar, M. J. Edwards, and A. B. Lentsch. 2012. Interleukin-33 is hepatoprotective during liver ischemia/reperfusion in mice. Hepatology 56: 1468-1478. https://doi.org/10.1002/hep.25768
  31. Monticelli, L. A., G. F. Sonnenberg, M. C. Abt, T. Alenghat, C. G. Ziegler, T. A. Doering, J. M. Angelosanto, B. J. Laidlaw, C. Y. Yang, T. Sathaliyawala, M. Kubota, D. Turner, J. M. Diamond, A. W. Goldrath, D. L. Farber, R. G. Collman, E. J. Wherry, and D. Artis. 2011. Innate lymphoid cells promote lung-tissue homeostasis after infection with influenza virus. Nat. Immunol. 12: 1045-1054. https://doi.org/10.1038/ni.2131
  32. Kulkarni, O. P., I. Hartter, S. R. Mulay, J. Hagemann, M. N. Darisipudi, V. S. Kumar, S. Romoli, D. Thomasova, M. Ryu, S. Kobold, and H. J. Anders. 2014. Toll-like receptor 4-induced IL-22 accelerates kidney regeneration. J. Am. Soc. Nephrol. 25: 978-989. https://doi.org/10.1681/ASN.2013050528
  33. Xu, M. J., D. Feng, H. Wang, Y. Guan, X. Yan, and B. Gao. 2014. IL-22 ameliorates renal ischemia-reperfusion injury by targeting proximal tubule epithelium. J. Am. Soc. Nephrol. 25: 967-977. https://doi.org/10.1681/ASN.2013060611
  34. Molofsky, A. B., A. K. Savage, and R. M. Locksley. 2015. Interleukin-33 in tissue homeostasis, injury, and inflammation. Immunity 42: 1005-1019. https://doi.org/10.1016/j.immuni.2015.06.006
  35. McHedlidze, T., M. Waldner, S. Zopf, J. Walker, A. L. Rankin, M. Schuchmann, D. Voehringer, A. N. McKenzie, M. F. Neurath, S. Pflanz, and S. Wirtz. 2013. Interleukin-33- dependent innate lymphoid cells mediate hepatic fibrosis. Immunity 39: 357-371. https://doi.org/10.1016/j.immuni.2013.07.018