과제정보
This work was supported by a grant from the National Research Foundation of Korea (funded by the Republic of Korea Ministry of Education, Science, and Technology Grant NRF-2013R1A1A1A01058298).
참고문헌
- Lionakis, M. S. 2014. New insights into innate immune control of systemic candidiasis. Med. Mycol. 52: 555-564. https://doi.org/10.1093/mmy/myu029
- Cassone, A. 2013. Development of vaccines for Candida albicans: fighting a skilled transformer. Nat. Rev. Microbiol. 11: 884-891. https://doi.org/10.1038/nrmicro3156
- Horn, D. L., D. Neofytos, E. J. Anaissie, J. A. Fishman, W. J. Steinbach, A. J. Olyaei, K. A. Marr, M. A. Pfaller, C. H. Chang, and K. M. Webster. 2009. Epidemiology and outcomes of candidemia in 2019 patients: data from the prospective antifungal therapy alliance registry. Clin. Infect. Dis. 48: 1695-1703. https://doi.org/10.1086/599039
- Medzhitov, R., D. S. Schneider, and M. P. Soares. 2012. Disease tolerance as a defense strategy. Science 335: 936-941. https://doi.org/10.1126/science.1214935
- Schmitz, J., A. Owyang, E. Oldham, Y. Song, E. Murphy, T. K. McClanahan, G. Zurawski, M. Moshrefi, J. Qin, X. Li, D. M. Gorman, J. F. Bazan, and R. A. Kastelein. 2005. IL-33, an interleukin-1-like cytokine that signals via the IL-1 receptorrelated protein ST2 and induces T helper type 2-associated cytokines. Immunity 23: 479-490. https://doi.org/10.1016/j.immuni.2005.09.015
- Liew, F. Y., N. I. Pitman, and I. B. McInnes. 2010. Diseaseassociated functions of IL-33: the new kid in the IL-1 family. Nat. Rev. Immunol. 10: 103-110. https://doi.org/10.1038/nri2692
- Licona-Limon, P., L. K. Kim, N. W. Palm, and R. A. Flavell. 2013. TH2, allergy and group 2 innate lymphoid cells. Nat. Immunol. 14: 536-542. https://doi.org/10.1038/ni.2617
- Le, H., W. Kim, J. Kim, H. R. Cho, and B. Kwon. 2013. Interleukin-33: a mediator of inflammation targeting hematopoietic stem and progenitor cells and their progenies. Front. Immunol. 4: 104.
- Sonnenberg, G. F., and D. Artis. 2015. Innate lymphoid cells in the initiation, regulation and resolution of inflammation. Nat. Med. 21: 698-708. https://doi.org/10.1038/nm.3892
- Villarreal, D. O., M. C. Wise, J. N. Walters, E. L. Reuschel, M. J. Choi, N. Obeng-Adjei, J. Yan, M. P. Morrow, and D. B. Weiner. 2014. Alarmin IL-33 acts as an immunoadjuvant to enhance antigen-specific tumor immunity. Cancer Res. 74: 1789-1800. https://doi.org/10.1158/0008-5472.CAN-13-2729
- Gao, X., X. Wang, Q. Yang, X. Zhao, W. Wen, G. Li, J. Lu, W. Qin, Y. Qi, F. Xie, J. Jiang, C. Wu, X. Zhang, X. Chen, H. Turnquist, Y. Zhu, and B. Lu. 2015. Tumoral expression of IL-33 inhibits tumor growth and modifies the tumor microenvironment through CD8+ T and NK cells. J. Immunol. 194: 438-445. https://doi.org/10.4049/jimmunol.1401344
- Kim, J., W. Kim, U. J. Moon, H. J. Kim, H. J. Choi, J. I. Sin, N. H. Park, H. R. Cho, and B. Kwon. 2016. Intratumorally establishing type 2 innate lymphoid cells blocks tumor growth. J. Immunol. 196: 2410-2423. https://doi.org/10.4049/jimmunol.1501730
- Bonilla, W. V., A. Frohlich, K. Senn, S. Kallert, M. Fernandez, S. Johnson, M. Kreutzfeldt, A. N. Hegazy, C. Schrick, P. G. Fallon, R. Klemenz, S. Nakae, H. Adler, D. Merkler, M. Lohning, and D. D. Pinschewer. 2012. The alarmin interleukin-33 drives protective antiviral CD8+ T cell responses. Science 335: 984-989. https://doi.org/10.1126/science.1215418
- Schiering, C., T. Krausgruber, A. Chomka, A. Frohlich, K. Adelmann, E. A. Wohlfert, J. Pott, T. Griseri, J. Bollrath, A. N. Hegazy, O. J. Harrison, B. M. Owens, M. Lohning, Y. Belkaid, P. G. Fallon, and F. Powrie. 2014. The alarmin IL-33 promotes regulatory T-cell function in the intestine. Nature 513: 564-568. https://doi.org/10.1038/nature13577
- Morita, H., K. Arae, H. Unno, K. Miyauchi, S. Toyama, A. Nambu, K. Oboki, T. Ohno, K. Motomura, A. Matsuda, S. Yamaguchi, S. Narushima, N. Kajiwara, M. Iikura, H. Suto, A. N. McKenzie, T. Takahashi, H. Karasuyama, K. Okumura, M. Azuma, K. Moro, C. A. Akdis, S. J. Galli, S. Koyasu, M. Kubo, K. Sudo, H. Saito, K. Matsumoto, and S. Nakae. 2015. An interleukin-33-mast cell-interleukin-2 axis suppresses papain-induced allergic inflammation by promoting regulatory T cell numbers. Immunity 43: 175-186. https://doi.org/10.1016/j.immuni.2015.06.021
- Kolodin, D., P. N. van, C. Li, A. M. Magnuson, D. Cipolletta, C. M. Miller, A. Wagers, R. N. Germain, C. Benoist, and D. Mathis. 2015. Antigen- and cytokine-driven accumulation of regulatory T cells in visceral adipose tissue of lean mice. Cell Metab. 21: 543-557. https://doi.org/10.1016/j.cmet.2015.03.005
- Arpaia, N., J. A. Green, B. Moltedo, A. Arvey, S. Hemmers, S. Yuan, P. M. Treuting, and A. Y. Rudensky. 2015. A distinct function of regulatory T cells in tissue protection. Cell 162: 1078-1089. https://doi.org/10.1016/j.cell.2015.08.021
- Molofsky, A. B., G. F. Van, H. E. Liang, S. J. Van Dyken, J. C. Nussbaum, J. Lee, J. A. Bluestone, and R. M. Locksley. 2015. Interleukin-33 and interferon-gamma counter-regulate group 2 innate lymphoid cell activation during immune rerturbation. Immunity 43: 161-174. https://doi.org/10.1016/j.immuni.2015.05.019
- Moro, K., H. Kabata, M. Tanabe, S. Koga, N. Takeno, M. Mochizuki, K. Fukunaga, K. Asano, T. Betsuyaku, and S. Koyasu. 2016. Interferon and IL-27 antagonize the function of group 2 innate lymphoid cells and type 2 innate immune responses. Nat. Immunol. 17: 76-86. https://doi.org/10.1038/ni.3309
- Duerr, C. U., C. D. McCarthy, B. C. Mindt, M. Rubio, A. P. Meli, J. Pothlichet, M. M. Eva, J. F. Gauchat, S. T. Qureshi, B. D. Mazer, K. L. Mossman, D. Malo, A. M. Gamero, S. M. Vidal, I. L. King, M. Sarfati, and J. H. Fritz. 2016. Type I interferon restricts type 2 immunopathology through the regulation of group 2 innate lymphoid cells. Nat. Immunol. 17: 65-75. https://doi.org/10.1038/ni.3308
- Le, H. T., V. G. Tran, W. Kim, J. Kim, H. R. Cho, and B. Kwon. 2012. IL-33 priming regulates multiple steps of the neutrophil-mediated anti-Candida albicans response by modulating TLR and dectin-1 signals. J. Immunol. 189: 287-295. https://doi.org/10.4049/jimmunol.1103564
- Alves-Filho, J. C., F. Sonego, F. O. Souto, A. Freitas, W. A. Verri, Jr., M. uxiliadora-Martins, A. Basile-Filho, A. N. McKenzie, D. Xu, F. Q. Cunha, and F. Y. Liew. 2010. Interleukin-33 attenuates sepsis by enhancing neutrophil influx to the site of infection. Nat. Med. 16: 708-712. https://doi.org/10.1038/nm.2156
- Lionakis, M. S., M. Swamydas, B. G. Fischer, T. S. Plantinga, M. D. Johnson, M. Jaeger, N. M. Green, A. Masedunskas, R. Weigert, C. Mikelis, W. Wan, C. C. Lee, J. K. Lim, A. Rivollier, J. C. Yang, G. M. Laird, R. T. Wheeler, B. D. Alexander, J. R. Perfect, J. L. Gao, B. J. Kullberg, M. G. Netea, and P. M. Murphy. 2013. CX3CR1-dependent renal macrophage survival promotes Candida control and host survival. J. Clin. Invest 123: 5035-5051. https://doi.org/10.1172/JCI71307
- Ngo, L. Y., S. Kasahara, D. K. Kumasaka, S. E. Knoblaugh, A. Jhingran, and T. M. Hohl. 2014. Inflammatory monocytes mediate early and organ-specific innate defense during systemic candidiasis. J. Infect. Dis. 209: 109-119. https://doi.org/10.1093/infdis/jit413
- Tran, V. G., H. J. Kim, J. Kim, S. W. Kang, U. J. Moon, H. R. Cho, and B. Kwon. 2015. IL-33 Enhances Host Tolerance to Candida albicans Kidney Infections through Induction of IL- 13 Production by CD4+ T Cells. J. Immunol. 194: 4871-4879. https://doi.org/10.4049/jimmunol.1402986
- Coste, A., M. Dubourdeau, M. D. Linas, S. Cassaing, J. C. Lepert, P. Balard, S. Chalmeton, J. Bernad, C. Orfila, J. P. Seguela, and B. Pipy. 2003. PPARgamma promotes mannose receptor gene expression in murine macrophages and contributes to the induction of this receptor by IL-13. Immunity 19: 329-339. https://doi.org/10.1016/S1074-7613(03)00229-2
- Gales, A., A. Conduche, J. Bernad, L. Lefevre, D. Olagnier, M. Beraud, G. Martin-Blondel, M. D. Linas, J. Auwerx, A. Coste, and B. Pipy. 2010. PPARgamma controls Dectin-1 expression required for host antifungal defense against Candida albicans. PLoS Pathog. 6: e1000714.
- Kim, J., W. Kim, H. T. Le, U. J. Moon, V. G. Tran, H. J. Kim, S. Jung, Q. T. Nguyen, B. S. Kim, J. B. Jun, H. R. Cho, and B. Kwon. 2014. IL-33-induced hematopoietic stem and progenitor cell mobilization depends upon CCR2. J. Immunol. 193: 3792-3802. https://doi.org/10.4049/jimmunol.1400176
- Majer, O., C. Bourgeois, F. Zwolanek, C. Lassnig, D. Kerjaschki, M. Mack, M. Muller, and K. Kuchler. 2012. Type I interferons promote fatal immunopathology by regulating inflammatory monocytes and neutrophils during Candida infections. PLoS Pathog. 8: e1002811.
- Sakai, N., H. L. Van Sweringen, R. C. Quillin, R. Schuster, J. Blanchard, J. M. Burns, A. D. Tevar, M. J. Edwards, and A. B. Lentsch. 2012. Interleukin-33 is hepatoprotective during liver ischemia/reperfusion in mice. Hepatology 56: 1468-1478. https://doi.org/10.1002/hep.25768
- Monticelli, L. A., G. F. Sonnenberg, M. C. Abt, T. Alenghat, C. G. Ziegler, T. A. Doering, J. M. Angelosanto, B. J. Laidlaw, C. Y. Yang, T. Sathaliyawala, M. Kubota, D. Turner, J. M. Diamond, A. W. Goldrath, D. L. Farber, R. G. Collman, E. J. Wherry, and D. Artis. 2011. Innate lymphoid cells promote lung-tissue homeostasis after infection with influenza virus. Nat. Immunol. 12: 1045-1054. https://doi.org/10.1038/ni.2131
- Kulkarni, O. P., I. Hartter, S. R. Mulay, J. Hagemann, M. N. Darisipudi, V. S. Kumar, S. Romoli, D. Thomasova, M. Ryu, S. Kobold, and H. J. Anders. 2014. Toll-like receptor 4-induced IL-22 accelerates kidney regeneration. J. Am. Soc. Nephrol. 25: 978-989. https://doi.org/10.1681/ASN.2013050528
- Xu, M. J., D. Feng, H. Wang, Y. Guan, X. Yan, and B. Gao. 2014. IL-22 ameliorates renal ischemia-reperfusion injury by targeting proximal tubule epithelium. J. Am. Soc. Nephrol. 25: 967-977. https://doi.org/10.1681/ASN.2013060611
- Molofsky, A. B., A. K. Savage, and R. M. Locksley. 2015. Interleukin-33 in tissue homeostasis, injury, and inflammation. Immunity 42: 1005-1019. https://doi.org/10.1016/j.immuni.2015.06.006
- McHedlidze, T., M. Waldner, S. Zopf, J. Walker, A. L. Rankin, M. Schuchmann, D. Voehringer, A. N. McKenzie, M. F. Neurath, S. Pflanz, and S. Wirtz. 2013. Interleukin-33- dependent innate lymphoid cells mediate hepatic fibrosis. Immunity 39: 357-371. https://doi.org/10.1016/j.immuni.2013.07.018