DOI QR코드

DOI QR Code

Population-Stratified Analysis of Bone Mineral Density Distribution in Cervical and Lumbar Vertebrae of Chinese from Quantitative Computed Tomography

  • Zhang, Yong (Department of Radiology, The Fourth Clinical Medical College of Peking University, Beijing Jishuitan Hospital) ;
  • Zhou, Zhuang (Department of Orthopedic Oncology, The Third Hospital of Hebei Medical University) ;
  • Wu, Cheng'ai (Beijing Institute of Traumatology and Orthopedics) ;
  • Zhao, Danhui (Beijing Institute of Traumatology and Orthopedics) ;
  • Wang, Chao (Beijing Institute of Traumatology and Orthopedics) ;
  • Cheng, Xiaoguang (Department of Radiology, The Fourth Clinical Medical College of Peking University, Beijing Jishuitan Hospital) ;
  • Cai, Wei (Department of Radiology, The Fourth Clinical Medical College of Peking University, Beijing Jishuitan Hospital) ;
  • Wang, Ling (Department of Radiology, The Fourth Clinical Medical College of Peking University, Beijing Jishuitan Hospital) ;
  • Duanmu, Yangyang (Department of Radiology, The Fourth Clinical Medical College of Peking University, Beijing Jishuitan Hospital) ;
  • Zhang, Chenxin (Department of Radiology, The Fourth Clinical Medical College of Peking University, Beijing Jishuitan Hospital) ;
  • Tian, Wei (Department of Spine Surgery, The Fourth Clinical Medical College of Peking University, Beijing Jishuitan Hospital)
  • Received : 2016.02.03
  • Accepted : 2016.05.23
  • Published : 2016.09.01

Abstract

Objective: To investigate the bone mineral density (BMD) of cervical vertebrae in a population-stratified manner and correlate with that of the lumbar vertebrae. Materials and Methods: Five hundred and ninety-eight healthy volunteers (254 males, 344 females), ranging from 20 to 64 years of age, were recruited for volumetric BMD (vBMD) measurements by quantitative computed tomography. Basic information (age, height, weight, waistline, and hipline), and vBMD of the cervical and lumbar vertebrae (C2-7 and L2-4) were recorded. Comparisons among sex, age groups and different levels of vertebrae were analyzed using analysis of variance. Linear regression was performed for relevance of different vertebral levels. Results: The vBMD of cervical and lumbar vertebrae was higher in females than males in each age group. The vBMD of the cervical and lumbar vertebrae in males and the vBMD of lumbar vertebrae in females decreased with aging. In each age group, the vBMD of the cervical vertebrae was higher than that of the lumbar vertebrae with gradual decreases from C2 to C7 except for C3; moreover, the vBMD of C6 and C7 was significantly different from that of C2-5. Correlations of vBMD among different cervical vertebrae (females: r = 0.62-0.94; males: r = 0.63-0.94) and lumbar vertebrae (males: r = 0.93-0.98; females: r = 0.82-0.97) were statistically significant at each age group. Conclusion: The present study provided normative data of cervical vertebrae in an age- and sex-stratified manner. Sex differences in vBMD prominently vary with age, which can be helpful to design a more comprehensive pre-operative surgical plan.

Keywords

Acknowledgement

Supported by : Beijing Municipal Bureau of Health

References

  1. Cooper C, Cole ZA, Holroyd CR, Earl SC, Harvey NC, Dennison EM, et al. Secular trends in the incidence of hip and other osteoporotic fractures. Osteoporos Int 2011;22:1277-1288 https://doi.org/10.1007/s00198-011-1601-6
  2. D'Amelio P, Rossi P, Isaia G, Lollino N, Castoldi F, Girardo M, et al. Bone mineral density and singh index predict bone mechanical properties of human femur. Connect Tissue Res 2008;49:99-104 https://doi.org/10.1080/03008200801913940
  3. Jiang C, Giger ML, Kwak SM, Chinander MR, Martell JM, Favus MJ. Normalized BMD as a predictor of bone strength. Acad Radiol 2000;7:33-39 https://doi.org/10.1016/S1076-6332(00)80441-9
  4. Devlin HB, Goldman M. Backache due to osteoporosis in an industrial population. A survey of 481 patients. Ir J Med Sci 1966;6:141-148
  5. Ensrud KE, Blackwell TL, Cawthon PM, Bauer DC, Fink HA, Schousboe JT, et al. Degree of trauma differs for major osteoporotic fracture events in older men versus older women. J Bone Miner Res 2016;31:204-207 https://doi.org/10.1002/jbmr.2589
  6. Yang Z, Griffith JF, Leung PC, Lee R. Effect of osteoporosis on morphology and mobility of the lumbar spine. Spine (Phila Pa 1976) 2009;34:E115-E121 https://doi.org/10.1097/BRS.0b013e3181895aca
  7. Fechtenbaum J, Etcheto A, Kolta S, Feydy A, Roux C, Briot K. Sagittal balance of the spine in patients with osteoporotic vertebral fractures. Osteoporos Int 2016;27:559-567 https://doi.org/10.1007/s00198-015-3283-y
  8. Watanabe M, Sakai D, Yamamoto Y, Sato M, Mochida J. Upper cervical spine injuries: age-specific clinical features. J Orthop Sci 2010;15:485-492 https://doi.org/10.1007/s00776-010-1493-x
  9. Zhuang XM, Yu BS, Zheng ZM, Zhang JF, Lu WW. Effect of the degree of osteoporosis on the biomechanical anchoring strength of the sacral pedicle screws: an in vitro comparison between unaugmented bicortical screws and polymethylmethacrylate augmented unicortical screws. Spine (Phila Pa 1976) 2010;35:E925-E931 https://doi.org/10.1097/BRS.0b013e3181c5fb21
  10. Thiele OC, Eckhardt C, Linke B, Schneider E, Lill CA. Factors affecting the stability of screws in human cortical osteoporotic bone: a cadaver study. J Bone Joint Surg Br 2007;89:701-705
  11. Ebbesen EN, Thomsen JS, Beck-Nielsen H, Nepper-Rasmussen HJ, Mosekilde L. Lumbar vertebral body compressive strength evaluated by dual-energy X-ray absorptiometry, quantitative computed tomography, and ashing. Bone 1999;25:713-724 https://doi.org/10.1016/S8756-3282(99)00216-1
  12. Pickhardt PJ, Lee LJ, del Rio AM, Lauder T, Bruce RJ, Summers RM, et al. Simultaneous screening for osteoporosis at CT colonography: bone mineral density assessment using MDCT attenuation techniques compared with the DXA reference standard. J Bone Miner Res 2011;26:2194-2203 https://doi.org/10.1002/jbmr.428
  13. Ebbesen EN, Thomsen JS, Beck-Nielsen H, Nepper-Rasmussen HJ, Mosekilde L. Vertebral bone density evaluated by dual-energy X-ray absorptiometry and quantitative computed tomography in vitro. Bone 1998;23:283-290 https://doi.org/10.1016/S8756-3282(98)00091-X
  14. Yoganandan N, Kumaresan S, Pintar FA. Biomechanics of the cervical spine part 2. Cervical spine soft tissue responses and biomechanical modeling. Clin Biomech (Bristol, Avon) 2001;16:1-27 https://doi.org/10.1016/S0268-0033(00)00074-7
  15. White AA 3rd, Panjabi MM. The basic kinematics of the human spine. A review of past and current knowledge. Spine (Phila Pa 1976) 1978;3:12-20 https://doi.org/10.1097/00007632-197803000-00003
  16. Huelke DF, Nusholtz GS. Cervical spine biomechanics: a review of the literature. J Orthop Res 1986;4:232-245 https://doi.org/10.1002/jor.1100040212
  17. Grote HJ, Amling M, Vogel M, Hahn M, Posl M, Delling G. Intervertebral variation in trabecular microarchitecture throughout the normal spine in relation to age. Bone 1995;16:301-308 https://doi.org/10.1016/8756-3282(94)00042-5
  18. Yoganandan N, Pintar FA, Stemper BD, Baisden JL, Aktay R, Shender BS, et al. Trabecular bone density of male human cervical and lumbar vertebrae. Bone 2006;39:336-344 https://doi.org/10.1016/j.bone.2006.01.160
  19. Yoganandan N, Pintar FA, Stemper BD, Baisden JL, Aktay R, Shender BS, et al. Bone mineral density of human female cervical and lumbar spines from quantitative computed tomography. Spine (Phila Pa 1976) 2006;31:73-76 https://doi.org/10.1097/01.brs.0000192684.12046.93
  20. Yu W, Qin M, Xu L, van Kuijk C, Meng X, Xing X, et al. Normal changes in spinal bone mineral density in a Chinese population: assessment by quantitative computed tomography and dual-energy X-ray absorptiometry. Osteoporos Int 1999;9:179-187 https://doi.org/10.1007/s001980050133
  21. Prevrhal S, Shepherd JA, Faulkner KG, Gaither KW, Black DM, Lang TF. Comparison of DXA hip structural analysis with volumetric QCT. J Clin Densitom 2008;11:232-236 https://doi.org/10.1016/j.jocd.2007.12.001
  22. Yu EW, Thomas BJ, Brown JK, Finkelstein JS. Simulated increases in body fat and errors in bone mineral density measurements by DXA and QCT. J Bone Miner Res 2012;27:119-124 https://doi.org/10.1002/jbmr.506
  23. Bligh M, Bidaut L, White RA, Murphy WA Jr, Stevens DM, Cody DD. Helical multidetector row quantitative computed tomography (QCT) precision. Acad Radiol 2009;16:150-159 https://doi.org/10.1016/j.acra.2008.08.007
  24. Lang TF, Li J, Harris ST, Genant HK. Assessment of vertebral bone mineral density using volumetric quantitative CT. J Comput Assist Tomogr 1999;23:130-137 https://doi.org/10.1097/00004728-199901000-00027
  25. Wang L, Wang W, Xu L, Cheng X, Ma Y, Liu D, et al. Relation of visceral and subcutaneous adipose tissue to bone mineral density in chinese women. Int J Endocrinol 2013;2013:378632
  26. Pickhardt PJ, Bodeen G, Brett A, Brown JK, Binkley N. Comparison of femoral neck BMD evaluation obtained using Lunar DXA and QCT with asynchronous calibration from CT colonography. J Clin Densitom 2015;18:5-12 https://doi.org/10.1016/j.jocd.2014.03.002
  27. Emohare O, Dittmer A, Morgan RA, Switzer JA, Polly DW Jr. Osteoporosis in acute fractures of the cervical spine: the role of opportunistic CT screening. J Neurosurg Spine 2015;23:1-7 https://doi.org/10.3171/2014.10.SPINE14233
  28. Setiawati R, Di Chio F, Rahardjo P, Nasuto M, Dimpudus FJ, Guglielmi G. Quantitative assessment of abdominal aortic calcifications using lateral lumbar radiograph, dual-energy X-ray absorptiometry, and quantitative computed tomography of the spine. J Clin Densitom 2016;19:242-249 https://doi.org/10.1016/j.jocd.2015.01.007
  29. Grampp S, Jergas M, Gluer CC, Lang P, Brastow P, Genant HK. Radiologic diagnosis of osteoporosis. Current methods and perspectives. Radiol Clin North Am 1993;31:1133-1145
  30. Anderst WJ, Thorhauer ED, Lee JY, Donaldson WF, Kang JD. Cervical spine bone mineral density as a function of vertebral level and anatomic location. Spine J 2011;11:659-667 https://doi.org/10.1016/j.spinee.2011.05.007
  31. Weishaupt D, Schweitzer ME, DiCuccio MN, Whitley PE. Relationships of cervical, thoracic, and lumbar bone mineral density by quantitative CT. J Comput Assist Tomogr 2001;25:146-150 https://doi.org/10.1097/00004728-200101000-00027
  32. Curylo LJ, Lindsey RW, Doherty BJ, LeBlanc A. Segmental variations of bone mineral density in the cervical spine. Spine (Phila Pa 1976) 1996;21:319-322 https://doi.org/10.1097/00007632-199602010-00013
  33. Johnston CC Jr, Miller JZ, Slemenda CW, Reister TK, Hui S, Christian JC, et al. Calcium supplementation and increases in bone mineral density in children. N Engl J Med 1992;327:82-87 https://doi.org/10.1056/NEJM199207093270204
  34. Garn SM, Pao EM, Rihl ME. Compact bone in Chinese and Japanese. Science 1964;143:1439-1440 https://doi.org/10.1126/science.143.3613.1439
  35. Wright NM, Papadea N, Willi S, Veldhuis JD, Pandey JP, Key LL, et al. Demonstration of a lack of racial difference in secretion of growth hormone despite a racial difference in bone mineral density in premenopausal women--a Clinical Research Center study. J Clin Endocrinol Metab 1996;81:1023-1026
  36. Abraham AC, Agarwalla A, Yadavalli A, McAndrew C, Liu JY, Tang SY. Multiscale predictors of femoral neck in situ strength in aging women: contributions of BMD, cortical porosity, reference point indentation, and nonenzymatic glycation. J Bone Miner Res 2015;30:2207-2214 https://doi.org/10.1002/jbmr.2568
  37. Ryan MD, Henderson JJ. The epidemiology of fractures and fracture-dislocations of the cervical spine. Injury 1992;23:38-40 https://doi.org/10.1016/0020-1383(92)90123-A
  38. Fard SA, Patel AS, Avila MJ, Sattarov KV, Walter CM, Skoch J, et al. Anatomic considerations of the anterior upper cervical spine during decompression and instrumentation: a cadaveric based study. J Clin Neurosci 2015;22:1810-1815 https://doi.org/10.1016/j.jocn.2015.05.012
  39. Miller CP, Brubacher JW, Biswas D, Lawrence BD, Whang PG, Grauer JN. The incidence of noncontiguous spinal fractures and other traumatic injuries associated with cervical spine fractures: a 10-year experience at an academic medical center. Spine (Phila Pa 1976) 2011;36:1532-1540 https://doi.org/10.1097/BRS.0b013e3181f550a6
  40. Cheng XG, Li K, Ou SX, Tang GY, Wang QQ, Wang C, et al. Heterogeneity in spinal bone mineral density among young adults from three eastern provincial capital cities in mainland China. J Clin Densitom 2016 Apr 29 [Epub]. http://dx.doi.org/10.1016/j.jocd.2016.03.009
  41. Weigert J, Cann C. DXA in obese patients: are normal values really normal. J Women's Imaging 1999;1:11-17
  42. Carter DR, Bouxsein ML, Marcus R. New approaches for interpreting projected bone densitometry data. J Bone Miner Res 1992;7:137-145
  43. Trafton PG, Boyd CA Jr. Computed tomography of thoracic and lumbar spine injuries. J Trauma 1984;24:506-515 https://doi.org/10.1097/00005373-198406000-00008
  44. Fredo HL, Bakken IJ, Lied B, Ronning P, Helseth E. Incidence of traumatic cervical spine fractures in the Norwegian population: a national registry study. Scand J Trauma Resusc Emerg Med 2014;22:78 https://doi.org/10.1186/s13049-014-0078-7
  45. Riggins RS, Kraus JF. The risk of neurologic damage with fractures of the vertebrae. J Trauma 1977;17:126-133 https://doi.org/10.1097/00005373-197702000-00007
  46. Leucht P, Fischer K, Muhr G, Mueller EJ. Epidemiology of traumatic spine fractures. Injury 2009;40:166-172 https://doi.org/10.1016/j.injury.2008.06.040
  47. Wang H, Xiang L, Liu J, Zhou Y, Ou L. Gender differences in the clinical characteristics of traumatic spinal fractures among the elderly. Arch Gerontol Geriatr 2014;59:657-664 https://doi.org/10.1016/j.archger.2014.05.004
  48. Heidari P, Zarei MR, Rasouli MR, Vaccaro AR, Rahimi-Movaghar V. Spinal fractures resulting from traumatic injuries. Chin J Traumatol 2010;13:3-9

Cited by

  1. Discrimination of vertebral fragility fracture with lumbar spine bone mineral density measured by quantitative computed tomography vol.16, pp.None, 2019, https://doi.org/10.1016/j.jot.2018.08.007
  2. Measurements of volumetric bone mineral density in the mandible do not predict spinal osteoporosis vol.49, pp.3, 2016, https://doi.org/10.1259/dmfr.20190280