과제정보
연구 과제 주관 기관 : National Science Council of Taiwan (NSC)
참고문헌
- Aizikovich, S., Alexandrov, V. and Trubchik, I. (2009), "Bilateral asymptotic solution of one class of dual integral equations of the static contact problems for the foundations inhomogeneous in depth", Operator Theory: Adv. Appl., 191, 3-17.
- Aizikovich, S., Vasiliev, A., Sevostianov, I., Trubchik, I., Evich, L. and Ambalova, E. (2011), "Analytical solution for the bending of a plate on a functionally graded layer of complex structure", Eds. H. Altenbach, V.A. Eremeyev, Shell-like Structures: Non-classical Theories and Applications, Springer-Verlag, Heidelberg, Germany.
- Aizikovich, S.M. and Aleksandrov, V.M. (1984) "Axisymmetric problem of indentation of a circular die into an elastic half-space that is nonuniform with respect to depth", Mech. Solid., 19(2), 73-82.
- Aizikovich, S.M. and Vasiliev, A.S. (2013), "A bilateral asymptotic method of solving the integral equation of the contact problem of the torsion of an elastic half-space inhomogeneous in depth", J. Appl. Math. Mech., 77(1), 91-97. https://doi.org/10.1016/j.jappmathmech.2013.04.011
- Aleksandrov, V.M. (1973), "On the solution of one class of dual equations", Soviet Phys. Dokl., 18, 351.
- Aleksandrov, V.M. and Salamatova, V.Y. (2009), "Axisymmetric contact problem for an elastic half-space and a circular cover plate", Moscow University Mechanics Bulletin, 65(2), 43-46.
- Aleksandrov, V.M. and Solodovnik, M.D. (1974), "Asymptotic problem of the cylindrical bending of a plate of finite breadth in an elastic half-space", Soviet Appl. Mech., 10(7), 749-754. https://doi.org/10.1007/BF00886304
- Altenbach, H., Eremeyev, V.A. and Naumenko, K. (2015), "On the use of the first order shear deformation plate theory for the analysis of three-layer plates with thin soft core layer", ZAMM Z. Ang. Math. Mech., 95(10), 1004-1011. https://doi.org/10.1002/zamm.201500069
- Biot, M. (1937), "Bending of an infinite beam on an elastic foundation", J. Appl. Mech., ASME, 4, A1-A7.
- Bosakov, S.V. (2008), "The solution of the contact problem for a circular plate", J. Appl. Math. Mech., 72(1), 59-61. https://doi.org/10.1016/j.jappmathmech.2008.03.014
- Galin, L.A. (1961), Contact Problems in the Theory of Elasticity, North Carolina State College, Raleigh, N.C., USA.
- Guler, M.A., Gulver, Y.F. and Nart, E. (2012), "Contact analysis of thin films bonded to graded coatings", Int. J. Mech. Sci., 55(1), 50-64. https://doi.org/10.1016/j.ijmecsci.2011.12.003
- Ke, L.L., Yang, J., Kitipornchai, S. and Wang, Y.S. (2008), "Frictionless contact analysis of a functionally graded piezoelectric layered half-plane", Smart Mater. Struct., 17(2), 025003. https://doi.org/10.1088/0964-1726/17/2/025003
- Kim, N.I. (2009), "Series solutions for spatially coupled buckling anlaysis of thin-walled Timoshenko curved beam on elastic foundation", Struct. Eng. Mech., 33(4), 447-484. https://doi.org/10.12989/sem.2009.33.4.447
- Krenev, L., Aizikovich, S., Tokovyy, Y.V. and Wang, Y.C. (2015), "Axisymmetric problem on the indentation of a hot circular punch into an arbitrarily nonhomogeneous half-space", Int. J. Solid. Struct., 59, 18-28. https://doi.org/10.1016/j.ijsolstr.2014.12.017
- Kudish, I.I., Vasiliev, A.S., Volkov, S.S. and Aizikovich, S.M. (2016), "Some criteria for coating effectiveness in heavily loaded line EHL contacts. Part 1. dry contacts", J. Trib., ASME, 138(2), 021504.
- Liu, T.J., Wang, Y.S. and Xing, Y.M. (2012), "The axisymmetric partial slip contact problem of a graded coating", Meccanica, 47(7), 1673-1693. https://doi.org/10.1007/s11012-012-9547-0
- Ma, J., Ke, L.L. and Wang, Y.S. (2015), "Sliding frictional contact of functionally graded magneto- electroelastic materials under a conducting flat punch", J. Appl. Mech., 82, 011009. https://doi.org/10.1115/1.4029090
- Mao, J.J., Ke, L.L. and Wang, Y.S. (2014), "Thermoelastic contact instability of a functionally graded layer and a homogeneous half-plane", Int. J. Solid. Struct., 51, 3962-3972. https://doi.org/10.1016/j.ijsolstr.2014.07.019
- Mao, J.J., Ke, L.L. and Wang, Y.S. (2015), "Thermoelastic instability of a functionally graded layer and a homogeneous layer", Int. J. Mech. Sci., 99, 218-227. https://doi.org/10.1016/j.ijmecsci.2015.05.018
- Naumenko, K. and Eremeyev, V.A. (2014), "A layer-wise theory for laminated glass and photovoltaic panels", Compos. Struct., 112, 283-291. https://doi.org/10.1016/j.compstruct.2014.02.009
- Rvachev, V.L. (1958), "On the bending of an infinite beam on an elastic half-space", J. Appl. Math. Mech., 22, 984-988. https://doi.org/10.1016/0021-8928(58)90136-9
- Selvadurai, A.P.S. (1979), Elastic Analysis of Soil-Foundation Interaction, Elsevier, Amsterdam, The Netherlands.
- Selvadurai, A.P.S. (1984), "The flexure of an infinite strip of finite width embedded in an isotropic elastic medium of infinite extent", Int. J. Numer. Anal. Meth. Geomech., 8, 157-166. https://doi.org/10.1002/nag.1610080205
- Sneddon, I.N. (1951), Fourier Transforms, McGraw-Hill, New York, NY, USA.
- Tokovyy, Y. and Ma, C.C. (2015), "Analytical solutions to the axisymmetric elasticity and thermoelasticity problems for an arbitrarily inhomogeneous layer", Int. J. Eng. Sci., 92, 1-17. https://doi.org/10.1016/j.ijengsci.2015.03.003
- Tullini, N., Tralli, A. and Baraldi D. (2013), "Stability of slender beams and frames resting on 2D elastic half-space", Arch. Appl. Mech., 83, 467-482. https://doi.org/10.1007/s00419-012-0694-5
- Vasiliev, A.S., Volkov, S.S. and Aizikovich, S.M. (2016), "Normal point force and point electric charge in a piezoelectric transversely isotropic functionally graded half-space", Acta Mech., 227(1), 263-273. https://doi.org/10.1007/s00707-015-1414-3
- Vasiliev, A.S., Volkov, S.S., Aizikovich, S.M. and Jeng, Y.R. (2014), "Axisymmetric contact problems of the theory of elasticity for inhomogeneous layers", ZAMM Z. Ang. Math. Mech., 94(9), 705-712. https://doi.org/10.1002/zamm.201300067
- Vesic, A. (1961), "Bending of beams resting on isotropic elastic solid", J. Eng. Mech. Div., ASCE, 87(2), 35-54.
- Volkov, S.S., Aizikovich, S.M., Wang, Y.S. and Fedotov, I. (2013), "Analytical solution of axisymmetric contact problem about indentation of a circular indenter with flat base into the soft functional-gradient layer", Acta Mech. Sin., 29(2), 196-201. https://doi.org/10.1007/s10409-013-0022-5
- Vorovich, I.I. and Ustinov, I.A. (1959), "Pressure of a die on an elastic layer of finite thickness", J. Appl. Math. Mech., 23, 637-650. https://doi.org/10.1016/0021-8928(59)90158-3
- Wang, Y., Tham, L. and Cheung, Y. (2005), "Beams and plates on elastic foundations: a review", Prog. Struct. Eng. Mater., 7, 174-182. https://doi.org/10.1002/pse.202
피인용 문헌
- The coupled thermoelastic instability of FGM coatings with arbitrarily varying properties: in-plane sliding vol.229, pp.7, 2018, https://doi.org/10.1007/s00707-018-2150-2
- Solution of a dual integral equation arising in the contact problems of elasticity theory with the full Fourier series as the right-hand side vol.132, pp.None, 2016, https://doi.org/10.1051/matecconf/201713203011
- A four variable refined nth-order shear deformation theory for mechanical and thermal buckling analysis of functionally graded plates vol.13, pp.3, 2016, https://doi.org/10.12989/gae.2017.13.3.385
- Vibration analysis of nonlocal advanced nanobeams in hygro-thermal environment using a new two-unknown trigonometric shear deformation beam theory vol.20, pp.3, 2016, https://doi.org/10.12989/sss.2017.20.3.369
- A new and simple HSDT for thermal stability analysis of FG sandwich plates vol.25, pp.2, 2016, https://doi.org/10.12989/scs.2017.25.2.157
- Free vibration of functionally graded plates resting on elastic foundations based on quasi-3D hybrid-type higher order shear deformation theory vol.20, pp.4, 2017, https://doi.org/10.12989/sss.2017.20.4.509