DOI QR코드

DOI QR Code

Semiconductor coupled solar photo-Fenton's treatment of dyes and textile effluent

  • Raji, Jeevitha R. (Centre for Environmental Studies, Anna University) ;
  • Palanivelu, Kandasamy (Centre for Environmental Studies, Anna University)
  • 투고 : 2015.11.06
  • 심사 : 2016.04.24
  • 발행 : 2016.03.25

초록

$NanoTiO_2$ was synthesized by ultrasonication assisted sol-gel process and subjected to iron doping and carbon-iron codoping. The synthesized catalysts were characterized by XRD, HR-SEM, EDX, UV-Vis absorption spectroscopy and BET specific surface area analysis. The average crystallite size of pure $TiO_2$ was in the range of 30 - 33 nm, and that of Fe-$TiO_2$ and C-Fe $TiO_2$ was in the range of 7 - 13 nm respectively. The specific surface area of the iron doped and carbon-iron codoped nanoparticles was around $105m^2/g$ and $91m^2/g$ respectively. The coupled semiconductor photo-Fenton's activity of the synthesized catalysts was evaluated by the degradation of a cationic dye (C.I. Basic blue 9) and an anionic dye (C.I. Acid orange 52) with concurrent investigation on the operating variables such as pH, catalyst dosage, oxidant concentration and initial pollutant concentration. The most efficient C-Fe codoped catalyst was found to effectively destruct synthetic dyes and potentially treat real textile effluent achieving 93.4% of COD removal under minimal solar intensity (35-40 kiloLUX). This reveals the practical applicability of the process for the treatment of real wastewater in both high and low insolation regimes.

키워드

참고문헌

  1. Ahmed, S., Rasul, M.G., Martens, W.N., Brown, R.J. and Hashib, M.A. (2010), "Heterogeneous photocatalytic degradation of phenols in wasterwater: a review on current status and developments", Desalination, 261(1-2), 3-18. https://doi.org/10.1016/j.desal.2010.04.062
  2. Ahmed Hassan Ali (2013), "Study on the photocatalytic degradation of indigo carmine dye by $TiO_2$ photocatalyst", J. Kerbala Univ., 11(2), 145-153.
  3. Akpan, U.G. and Hameed, B.H. (2009), "Parameters affecting the photocatalytic degradation of dyes using $TiO_2$ based photocatalysts: A review", J. Haz. Mater., 170(2), 520-529. https://doi.org/10.1016/j.jhazmat.2009.05.039
  4. Avisar, D., Horovitz, I., Lozzi, L., Ruggieri, F., Baker, M., Abel, M. L., Ghaly, M.Y., Georg, H., Roland, M. and Roland, H. (2001), "Photochemical oxidation of p-chlorophenol by UV/$H_2O_2$ and photo-Fenton process. A comparative study", Waste Manage., 21(1), 41-47. https://doi.org/10.1016/S0956-053X(00)00070-2
  5. APHA (2005), Standard methods for the examination of water and wastewater, American Public Health Association, Washington, DC.
  6. Chen, X. and Gu, G. (2002), "Study on synthesis of nanometer $TiO_2$ crystal from organic compound in liquid phase at normal pressure and low temperature", Chin. J. Inorg. Chem., 18(7), 749-752.
  7. Fox, M.A. and Dulay, M.T. (1993), "Heterogeneous photocatalysis", Chem. Rev., 93(1), 341-350. https://doi.org/10.1021/cr00017a016
  8. Ghaly, M.Y., Georg, H., Roland, M. and Roland, H. (2001), "Photochemical oxidation of p-chlorophenol by UV/$H_2O_2$ and photo-Fenton process - A comparative study", Waste Manage., 21(1), 41-47. https://doi.org/10.1016/S0956-053X(00)00070-2
  9. Hamadanian, M., Reisi-Vanani, A., Behpour, M. and Esmaeily, A.S. (2011), "Synthesis and characterization of Fe, S-codoped $TiO_2$ nanoparticles: Application in degradation of organic water pollutants", Desalination, 281, 319-324. https://doi.org/10.1016/j.desal.2011.08.028
  10. Hussain, S.T. and Siddiqa, A. (2011), "Iron and chromium doped titanium dioxide nanotubes for the degradation of environmental and industrial pollutants", Int. J. Environ. Sci. Tech., 8(2), 351-362. https://doi.org/10.1007/BF03326222
  11. Jeevitha Raji, R. and Palanivelu, K. (2011), "Sunlight-induced photocatalytic degradation of organic pollutants by carbon-modified nanotitania with vegetable oil as precursor", Ind. Eng. Chem. Res., 50(6), 3130-3138. https://doi.org/10.1021/ie101259p
  12. Jeevitha Raji, R., J., Min-Jung, Im, Ji-Sun, Lee, Y.S. and Palanivelu, K. (2013), "Electrospinning of polymer unaided $TiO_2$ fibers and iron impregnation for sunlight-induced photo-Fenton's degradation of dyes", Environ. Eng. Sci., 30(11), 653-662. https://doi.org/10.1089/ees.2012.0051
  13. Jongsomjit, B., Tipnapa, W. and Piyasan, P. (2005), "Study of cobalt dispersion on titania consisting various rutile:anatase ratios", Mater. Chem. Phys., 92(2), 572-279. https://doi.org/10.1016/j.matchemphys.2005.02.016
  14. Kamat, P.V. and Dan, M. (2002), "Nanoparticles in advanced oxidation processes", Curr. Opin. Colloid Interf. Sci., 7(5), 282-287. https://doi.org/10.1016/S1359-0294(02)00069-9
  15. Karthikeyan, S., Titus, A., Gnanamani, G., Mandal, A.B. and Sekaran, G. (2011), "Treatment of textile wastewater by homogeneous and heterogeneous Fenton oxidation processes", Desalination, 281, 438-445. https://doi.org/10.1016/j.desal.2011.08.019
  16. Kavitha, P., Shavonda, M., Changseok, H., Miguel, P., Xiaojia, H., Dionysios, D. and Huey, H. (2013), "Photoinactivation of Escherichia coli by sulfur-doped and nitrogen-fluorine-codoped $TiO_2$ nanoparticles under solar simulated light and visible light irradiation", Environ. Sci. Technol., 47(17), 9988-9996. https://doi.org/10.1021/es401010g
  17. Konecoglu, G., Toygun, S., Kalpakli, Y. and Akgun, M. (2015), "Photocatalytic degradation of textile dye CI Basic Yellow 28 wastewater by Degussa P25 based $TiO_2$", Adv. Environ. Res., 4(1), 25-38. https://doi.org/10.12989/aer.2015.4.1.025
  18. Korosi, L., Oszko. A., Galbacs, G., Richardt, A., Zollmer, V. and Dekany, I. (2007), "Structural properties and photocatalytic behaviour of phosphate-modidied nanocrystalline titania films", Appl. Catal. B: Environ., 77(1), 175-181. https://doi.org/10.1016/j.apcatb.2007.07.019
  19. Li, C., Zhaohua, J. and Zhongping, Y. (2010), "Fabrication and characterization of multi-metal codopedtitania films for a water-splitting reaction", Dalton Trans., 39(44), 10692-10696. https://doi.org/10.1039/c0dt00448k
  20. Liu, F., Asakura, K., He, H. and Zang, C. (2011), "Influence of sulfation on iron titanate catalyst for the selective catalytic reduction of NOx with NH3", Appl. Catal. B: Environ., 103(3-4), 369-377. https://doi.org/10.1016/j.apcatb.2011.01.044
  21. Lucas, M.S. and Peres, J.A. (2006), "Decolorization of the azo dye Reactive Black 5 by Fenton and photo- Fenton oxidation", Dyes Pigments., 71(3), 236-244. https://doi.org/10.1016/j.dyepig.2005.07.007
  22. McEvoy, J.G., Wenquan, C. and Zisheng, Z. (2013), "Degradative and disinfective properties of carbondoped anatase-rutile $TiO_2$ mixtures under visible light irradiation", Catal. Today, 207, 191-199. https://doi.org/10.1016/j.cattod.2012.04.015
  23. Murray, C.B., Kagan, C.R. and Bawendi, M.G. (2000), "Synthesis and characterization of Monodisperse nano crystals and close-packed nanocrystal assemblies", Ann. Rev. Mater. Sci., 30(1), 545-550. https://doi.org/10.1146/annurev.matsci.30.1.545
  24. Navalon, S., Alvaro, M. and Gracia, H. (2010), "Heterogeneous Fenton catalysts based on clays, silicas and zeolites", Appl. Catal. B: Environ., 99(1), 1-26. https://doi.org/10.1016/j.apcatb.2010.07.006
  25. Oliveria, L.C.A., Goncalves, M., Guerreiro, M.C., Ramalho, T.C., Fabris, J.D., Pereira, M.C. and Sapag, K. (2007), "A new catalyst material based on Niobia/Iron oxide composite on the oxidation of organic contaminants in water via heterogeneous Fenton mechanisms", Appl. Catal. A: General, 316(1), 117-124. https://doi.org/10.1016/j.apcata.2006.09.027
  26. Praveen Surolia, K., Rajesh Tayade, J. and Rakesh Jasra, V. (2007), "Effect of anions on the photocatalytic activity of Fe(III) salts impregnated $TiO_2$", Ind. Eng. Chem. Res., 46(19), 6196-6203. https://doi.org/10.1021/ie0702678
  27. Ranganathan, K., Karunagaran, K. and Sharma, D.C. (2007), "Recycling of wastewaters of textile dyeing industries using advanced treatment technology and cost analysis-Case studies", Resour. Conserv. Recy., 50(3), 306-318. https://doi.org/10.1016/j.resconrec.2006.06.004
  28. Shujuan, Zhang, Landong, Li, Fuxiang, Zhang and Naijia, Guan (2005), "Influence of sulfation on the catalytic activity of Ni-ZrO2 for NO reduction with propane in excess oxygen", J. Nat. Gas Chem., 14(4), 221-225.
  29. Tamimi, M., Qourzal, S., Barka, N., Assambane, A. and Ait-Ichou, Y. (2008), "Methomyl degradation in aqueous solutions by Fenton'reagent and the photo-Fenton system", Sep. Purif. Technol., 61(1), 103-108. https://doi.org/10.1016/j.seppur.2007.09.017
  30. Torrades, F. and Garcia-Montano, J. (2014), "Using central composite experimental design to optimize the degradation of real dye wastewater by Fenton and photo-Fenton reactions", Dyes Pigments, 100, 184-190. https://doi.org/10.1016/j.dyepig.2013.09.004
  31. Wong, S.K., Jiyun, F., Xijun, H. and Po Lock, Y. (2004), "Discoloration and mineralization of nonbiodegradable azo dye orange ii by copper-doped $TiO_2$ nanocatalysts", J. Environ. Sci. Hlth., Part A, 39(10), 2583-2595. https://doi.org/10.1081/ESE-200027013
  32. Wu, G., Nishikawa, T., Ohtani, B. and Chen, A. (2007), "Synthesis and characterization of carbon doped $TiO_2$ nanostructures with enhanced visible light response", Chem. Mater., 19(18), 4530-4537. https://doi.org/10.1021/cm071244m
  33. Yu, H., Zheng, X., Yin, Z., Tao, F., Fang, B. and Hou, K. (2007), "Preparation of nitrogen-doped $TiO_2$ nanoparticle catalyst and its catalytic activity under visible light", Chin. J. Chem. Eng., 15(6), 802-807. https://doi.org/10.1016/S1004-9541(08)60006-3
  34. Zhang, H., Heung, J.C. and Chin-Pao, H. (2005), "Optimization of Fenton process for the treatment of landfill leachate", J. Haz. Mater., 125(1-3), 166-174. https://doi.org/10.1016/j.jhazmat.2005.05.025
  35. Zhao, B., Giuseppe, M., Iolanda, P., Jun, L., Leonardo, P. and Giuseppe, V. (2010), "Degradation of 4-nitrophenol (4-NP) using Fe-$TiO_2$ as a heterogeneous photo-Fenton catalyst", J. Haz. Mater., 176(1), 569-574. https://doi.org/10.1016/j.jhazmat.2009.11.066
  36. Zhiyong, Y., Bensimon, M. and Sarria, V. (2007), "$ZnSO_4\;TiO_2$ catalyst with higher photocatalytic activity", Appl. Catal. B: Environ., 76(1), 185-195. https://doi.org/10.1016/j.apcatb.2007.05.025

피인용 문헌

  1. A comprehensive review of the Fenton-based approaches focusing on landfill leachate treatment vol.10, pp.1, 2016, https://doi.org/10.12989/aer.2021.10.1.059